
Sicherheit in Kommunikationsnetzen
(Network Security)

Random Numbers

Dr.-Ing. Matthäus Wander

Universität Duisburg-Essen

Motivation

∙ We need random numbers in cryptography

∙ Example: key generation

∘ e.g. unpredictable key for one-time pad

∘ e.g. random primes for RSA

∙ Example: initial value/initialization vector

∘ e.g. in CBC or GCM mode

∙ Problem: computers are built for deterministic
computation, not random results

∘ Difficult to generate true randomness

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 2

Random Number Generator

∙ Definition: a random bit generator (RBG) or
random number generator (RNG) is a device or
algorithm that generates random numbers

∙ The major challenge is to generate a random
sequence of bits b ∈ {0, 1}

∘ From that, we can derive any random number

∙ Generate random number r ∈ ℤ with 0 ≤ r ≤ n

1. Generate bit sequence of length ⌊log2(n)⌋ + 1

2. Convert bits to non-negative integer r

3. If r > n, discard r and repeat from step 1

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 3

Random Number Generator (2)

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 4

TRNG PRNG

Entropy source

Random bit stream

Seed

Feedback

Pseudorandom bit stream

True Random Number Generator

∙ Definition: a true random number generator
(TRNG) is an RNG with the following properties:

1. Unpredictability: given a subsequence of
generated numbers, one cannot infer another
number from the sequence

∘ If first n bits known, one cannot predict bit n+1

2. Uniform distribution: distribution of generated
numbers in the sequence is uniform

∘ Bit values 0 and 1 occur with ½ probability each

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 5

True Random Number Generator (2)

∙ We cannot generate randomness with any
deterministic algorithm

∙ We need an entropy source

∘ Entropy: amount of information without redundancy

∘ Term borrowed from information theory

∘ In cryptographic context: amount of randomness

∙ Types of entropy sources

∘ Hardware-based: external device

∘ Software-based: utilize events visible on a computer

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 6

Hardware-based Entropy Source

∙ Generate bits based on physical phenomena

∘ Unpredictable events due to our state of knowledge

∘ Whether they are truly random is subject to physical
models and philosophical discussion

∙ Examples

∘ Radioactive decay: time between emission of particles

∘ Thermal noise from semiconductor diode or resistor

∘ Atmospheric noise detected by radio receiver

∘ Fluctuation in disk drive access due to air turbulence

∘ Ambient sound recorded by a microphone

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 7

Software-based Entropy Source

∙ Generate bits from events readable by software

∘ System clock or clock drift

∘ Time between use key strokes or mouse movement

∘ Network packet inter-arrival time

∘ Operating system values such as system load or
statistics for hard disk access

∙ Note: entropy sources become confidential data

∘ Operating systems usually do not treat them as such

∙ Increase entropy by mixing multiple sources

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 8

De-Skewing

∙ Some of these phenomena produce uncorrelated
but skewed bit sequences

∘ i.e. non-uniform distribution of bit values {0, 1}

∙ De-skew the bit sequence, for example:

∘ Read pairs of bits, remove „00“ and „11“ pairs

∘ Replace „01“→0 and „10“→1

∙ Result: uniform distribution of {0, 1}

∘ Simple algorithm but we discard 75% of input bits

∙ Alternative: apply cryptographic hash function

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 9

Random Integers within a Range

∙ Given an RNG that generates integers 0 ≤ r ≤ n

∙ What if you need an integer m < n?

∘ e.g. random() generates 8-bit numbers 0 ≤ r ≤ 255

∘ Your application needs 0 ≤ r ≤ 9

∙ Idea: r = random() MOD 10

∘ Problem: introduces bias for 0 to n-m MOD m

∙ Instead:

∘ Divide interval [0, n] into subintervalls of equal size

∘ Discard numbers that lie outside of subintervalls

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 10

Pseudorandom Number Generator

∙ Definition: a pseudorandom number generator
(PRNG) is a deterministic algorithm that:

∙ Input: receives k truly random bits

∘ This (short) input is called seed

∙ Output: produces a long binary sequence that
appears random

∘ The output is not truly random but derived
deterministically from the seed

∘ Thus pseudorandom

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 11

Pseudorandom Number Generator (2)

∙ True RNG are slow (subject to entropy source)

∙ Use True RNG to seed a Pseudo RNG

∘ Produces quickly a pseudorandom bit stream

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 12

TRNG PRNG

Entropy source

Random bit stream

Seed

Feedback

Pseudorandom bit stream

Linear Congruential Generator

∙ A Linear Congruential Generator (LCG) is a PRNG
that produces a sequence of numbers with:

∙ yi+1 = (a yi + b) MOD q

∘ a, b and q are integer constants

∘ y0 is the seed

∙ Example: yi+1 = (1103515245 yi + 12345) MOD 231

∘ Used in rand() function in ANSI C

∘ Good distribution of output numbers

∙ But: predictable output and thus insecure

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 13

Cryptographically Secure PRNG

∙ Definition: next-bit test

∘ A PRNG passes the next-bit test if there is no
polynomial-time algorithm that predicts the n+1 bit
from n known bits with a probability of >50%

∘ i.e. it is infeasible to predict the next bit

∙ Definition: a cryptographically secure
pseudorandom number generator (CSPRNG) is a
PRNG that passes the next-bit test

∘ Statistical tests cannot distinguish the output of a
CSPRNG from a TRNG

∘ Uniform distribution and practically unpredictable

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 14

Statistical Tests for Randomness

∙ Test randomness of PRNG e.g. with:

∘ Monobit test: same number of 1 and 0 bits?

∘ Serial test (two-bist test): same number of 00, 01, 10
and 11 pairs?

∘ Runs test: is the number of runs (sequences of only
either 0 or 1) for various lengths as we would expect
for random numbers?

∘ Maurer’s universal test: can we compress the
sequence without loss of information?

∙ Note: passing statistical tests gains confidence,
but does not guarantee to pass the next-bit test

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 15

Construction of CSPRNG

∙ PRNG that are not cryptographically secure

∘ Linear Congruential Generator (LCG)

∘ Linear Feedback Shift Register (LFSR)

∙ Stream ciphers are basically CSPRNG

∘ Usually very fast, but with rather thin security margin

∙ Generic schemes for constructing CSPRNG

∘ Based on block ciphers

∘ Based on cryptographic hash/MAC functions

∘ Based on problems from asymmetric cryptography

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 16

Block Ciphers in CTR/OFB Mode

∙ Seed consists of key K and value V

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 17

Block

Cipher
K

Pseudorandom bits

V+

1

Block

Cipher
K

Pseudorandom bits

V

CTR mode OFB mode

Block Ciphers with ANSI X9.17

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 18

Pseudorandom number Ri

Triple-

DES

System time

Triple-

DES

Vi

K1, K2

K1, K2

Triple-

DES
K1, K2

Vi+1

Seed

Secret keys

Hash/MAC Functions

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 19

Cryptographic

Hash Function

Pseudorandom bits

V+

HMACK

Pseudorandom bits

V

Seed Seed

Seed

RSA Generator

∙ Generate RSA public key: e, n

∘ Private key can be discarded

∙ Choose integer y0 as seed

∙ RSA encrypt: yi = (yi-1)
e mod n

∙ Output least significant bit: zi = yi & 1

∙ Repeat on next yi to get z1,z2,...,zn

∙ Security based on RSA integer factorization

∘ Very inefficient: one RSA encryption per random bit

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 20

Dual EC DRBG

∙ P, Q are constant points on an elliptic curve

∙ t is a scalar, initialized with seed

∙ Point multiplication over elliptic curves

∘ Security based on elliptic curve discrete logarithm

∘ Result is another point on curve, we use x-coordinate

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 21

t ∙P x coordinate ∙Q x coordinate r bits

Seed Point

multiplication

Point

multiplication

Dual EC DRBG (2)

∙ Secure if P and Q are independent

∘ Let P=e∙Q for a secret e and corresponding e-1

∘ Attacker can derive internal state from output bits

∙ Published by NIST with constant P, Q values

∘ Theory: predictable RNG due to NSA back door

∘ NIST standard withdrawn in 2014

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 22

t ∙P x coordinate ∙Q x coordinate r bits

Seed Point

multiplication

Point

multiplication

RNG in Operating Systems

∙ RNG provided by operating system or standard
library of programming languages

∘ Fast generation of numbers

∘ Uniform distribution

∙ But: usually not cryptographically secure

∘ Do not rely on random() for cryptographic purposes!

∙ CSPRNG under Linux

∘ /dev/random: read blocks once entropy is depleted

∘ /dev/urandom: read never blocks, seeded PRNG from
same entropy pool like /dev/random

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 23

Example: Intel Digital RNG

∙ Hardware RNG built in Intel Ivy Bridge CPUs

∘ Thermal noise from two inverters (NOT gates)

∙ Hardware entropy source fed into AES CBC-MAC

∘ Removes skew or bias of entropy source

∘ CBC-MAC output fed into an AES-based CSPRNG

∙ RDRAND instruction returns 128-bit number

∘ Secure if implemented correctly
Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 24

Hardware

entropy source

2x AES

CBC-MAC

AES CTR

CSPRNG

512 bit 256 bit 128-bit

random

number
Key

Example: Intel Digital RNG (2)

∙ Problem: we cannot look into the CPU hardware

∘ Thus security audit is impossible

∘ We can test whether the output passes statistical tests

∘ We don‘t know whether there are back doors that
allow to recover or tamper with random numbers

∙ Linux uses RDRAND as entropy source mixed
with software entropy sources

∘ If RDRAND is bad, it won‘t increase entropy

∘ Careful mixing required, otherwise a malicious
entropy source could cancel out other entropy sources

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 25

Conclusions

∙ Generating truly random numbers is hard

∘ Hardware and software-based entropy sources

∘ Uniform distribution of numbers desired

∘ Impossible to predict output bits

∙ Initialize pseudorandom RNG with random seed

∙ Not all PRNG suitable for cryptography

∙ Cryptographically secure PRNG implementations
use block ciphers or hash functions in practice

∘ Infeasible to predict output bits

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 26

