

Sicherheit in Kommunikationsnetzen (Network Security)

Random Numbers

Dr.-Ing. Matthäus Wander

Universität Duisburg-Essen

Motivation

- We need random numbers in cryptography
- Example: key generation
 - e.g. unpredictable key for one-time pad
 - e.g. random primes for RSA
- Example: initial value/initialization vector
 - e.g. in CBC or GCM mode
- Problem: computers are built for deterministic computation, not random results
 - Difficult to generate true randomness

Random Number Generator

- <u>Definition</u>: a random bit generator (RBG) or random number generator (RNG) is a device or algorithm that generates random numbers
- The major challenge is to generate a random sequence of bits $b \in \{0, 1\}$
 - From that, we can derive any random number
- Generate random number $r \in \mathbb{Z}$ with $0 \leq r \leq n$
 - 1. Generate bit sequence of length $\lfloor \log_2(n) \rfloor + 1$
 - 2. Convert bits to non-negative integer r
 - 3. If r > n, discard r and repeat from step 1

Universität Duisburg–Essen Verteilte Systeme

Random Number Generator (2)

Universität Duisburg–Essen Verteilte Systeme

True Random Number Generator

- <u>Definition</u>: a true random number generator (TRNG) is an RNG with the following properties:
- 1. Unpredictability: given a subsequence of generated numbers, one cannot infer another number from the sequence
 - If first n bits known, one cannot predict bit n+1
- 2. Uniform distribution: distribution of generated numbers in the sequence is uniform
 - Bit values 0 and 1 occur with ½ probability each

True Random Number Generator (2)

- We cannot generate randomness with any deterministic algorithm
- We need an entropy source
 - Entropy: amount of information without redundancy
 - Term borrowed from information theory
 - In cryptographic context: amount of randomness
- Types of entropy sources
 - Hardware-based: external device
 - Software-based: utilize events visible on a computer

Hardware-based Entropy Source

- Generate bits based on physical phenomena
 - Unpredictable events due to our state of knowledge
 - Whether they are truly random is subject to physical models and philosophical discussion

Examples

- Radioactive decay: time between emission of particles
- Thermal noise from semiconductor diode or resistor
- Atmospheric noise detected by radio receiver
- Fluctuation in disk drive access due to air turbulence
- Ambient sound recorded by a microphone

Universität Duisburg–Esser Verteilte Systeme

Software-based Entropy Source

- Generate bits from events readable by software
 - System clock or clock drift
 - Time between use key strokes or mouse movement
 - Network packet inter-arrival time
 - Operating system values such as system load or statistics for hard disk access
- Note: entropy sources become confidential data
 - Operating systems usually do not treat them as such
- Increase entropy by mixing multiple sources

De-Skewing

- Some of these phenomena produce uncorrelated but skewed bit sequences
 - i.e. non-uniform distribution of bit values {0, 1}
- De-skew the bit sequence, for example:
 - Read pairs of bits, remove "00" and "11" pairs
 - Replace $01^{"} \rightarrow 0$ and $10^{"} \rightarrow 1$
- Result: uniform distribution of {0, 1}
 - Simple algorithm but we discard 75% of input bits
- Alternative: apply cryptographic hash function

Random Integers within a Range

- Given an RNG that generates integers $0 \le r \le n$
- What if you need an integer m < n?
 - $\circ\,$ e.g. random() generates 8-bit numbers 0 \leq r \leq 255
 - Your application needs $0 \le r \le 9$
- Idea: r = random() MOD 10
 - Problem: introduces bias for 0 to n-m MOD m
- Instead:
 - Divide interval [0, n] into subintervalls of equal size
 - Discard numbers that lie outside of subintervalls

Pseudorandom Number Generator

- <u>Definition</u>: a <u>pseudorandom number generator</u> (PRNG) is a deterministic algorithm that:
- Input: receives k truly random bits
 - This (short) input is called seed
- Output: produces a long binary sequence that appears random
 - The output is not truly random but derived deterministically from the seed
 - Thus pseudorandom

Pseudorandom Number Generator (2)

- True RNG are slow (subject to entropy source)
- Use True RNG to seed a Pseudo RNG

Produces quickly a pseudorandom bit stream

Linear Congruential Generator

• A Linear Congruential Generator (LCG) is a PRNG that produces a sequence of numbers with:

•
$$y_{i+1} = (a \times y_i + b) \text{ MOD } q$$

- a, b and q are integer constants
- \circ y₀ is the seed
- Example: $y_{i+1} = (1103515245 \times y_i + 12345) \text{ MOD } 2^{31}$
 - Used in rand() function in ANSI C
 - Good distribution of output numbers
- But: predictable output and thus insecure

IVERSITÄT

Cryptographically Secure PRNG

- <u>Definition</u>: next-bit test
 - A PRNG passes the next-bit test if there is no polynomial-time algorithm that predicts the n+1 bit from n known bits with a probability of >50%
 - i.e. it is infeasible to predict the next bit
- <u>Definition</u>: a cryptographically secure pseudorandom number generator (CSPRNG) is a PRNG that passes the next-bit test
 - Statistical tests cannot distinguish the output of a CSPRNG from a TRNG
 - Uniform distribution and practically unpredictable

Iniversität Duisburg–Essen ′erteilte Systeme

Statistical Tests for Randomness

- Test randomness of PRNG e.g. with:
 - Monobit test: same number of 1 and 0 bits?
 - Serial test (two-bist test): same number of 00, 01, 10 and 11 pairs?
 - Runs test: is the number of runs (sequences of only either 0 or 1) for various lengths as we would expect for random numbers?
 - Maurer's universal test: can we compress the sequence without loss of information?
- Note: passing statistical tests gains confidence, but does not guarantee to pass the next-bit test

Construction of CSPRNG

- PRNG that are **not** cryptographically secure
 - Linear Congruential Generator (LCG)
 - Linear Feedback Shift Register (LFSR)
- Stream ciphers are basically CSPRNG
 Usually very fast, but with rather thin security margin
- Generic schemes for constructing CSPRNG
 - Based on block ciphers
 - Based on cryptographic hash/MAC functions
 - Based on problems from asymmetric cryptography

Block Ciphers in CTR/OFB Mode

Seed consists of key K and value V

Universität Duisburg–Essen Verteilte Systeme

Block Ciphers with ANSI X9.17

Universität Duisburg–Essen Verteilte Systeme

Hash/MAC Functions

Universität Duisburg-Essen Verteilte Systeme

RSA Generator

- Generate RSA public key: e, n
 - Private key can be discarded
- Choose integer y₀ as seed
- RSA encrypt: $y_i = (y_{i-1})^e \mod n$
- Output least significant bit: z_i = y_i & 1
- Repeat on next y_i to get z₁, z₂,..., z_n
- Security based on RSA integer factorization
 - Very inefficient: one RSA encryption per random bit

Dual EC DRBG

- P, Q are constant points on an elliptic curve
- t is a scalar, initialized with seed
- Point multiplication over elliptic curves
 - Security based on elliptic curve discrete logarithm
 - Result is another point on curve, we use x-coordinate

Dual EC DRBG (2)

- Secure if P and Q are independent
 - Let P=e•Q for a secret e and corresponding e⁻¹
 - Attacker can derive internal state from output bits
- Published by NIST with constant P, Q values
 - Theory: predictable RNG due to NSA back door
 - NIST standard withdrawn in 2014

UNIVERSITÄT DUISBURG ESSEN

Universität Duisburg–Essen Verteilte Systeme

RNG in Operating Systems

- RNG provided by operating system or standard library of programming languages
 - Fast generation of numbers
 - Uniform distribution
- But: usually not cryptographically secure
 - Do not rely on random() for cryptographic purposes!
- CSPRNG under Linux
 - /dev/random: read blocks once entropy is depleted
 - /dev/urandom: read never blocks, seeded PRNG from same entropy pool like /dev/random

Example: Intel Digital RNG

- Hardware RNG built in Intel Ivy Bridge CPUs
 Thermal noise from two inverters (NOT gates)
- Hardware entropy source fed into AES CBC-MAC
 - Removes skew or bias of entropy source
 - CBC-MAC output fed into an AES-based CSPRNG
- RDRAND instruction returns 128-bit number
 - Secure if implemented correctly

UNIVERSITÄT DUISBURG ESSEN

Universität Duisburg-Essen Verteilte Systeme

Example: Intel Digital RNG (2)

- Problem: we cannot look into the CPU hardware
 - Thus security audit is impossible
 - We can test whether the output passes statistical tests
 - We don't know whether there are back doors that allow to recover or tamper with random numbers
- Linux uses RDRAND as entropy source mixed with software entropy sources
 - If RDRAND is bad, it won't increase entropy
 - Careful mixing required, otherwise a malicious entropy source could cancel out other entropy sources

Conclusions

- Generating truly random numbers is hard
 - Hardware and software-based entropy sources
 - Uniform distribution of numbers desired
 - Impossible to predict output bits
- Initialize pseudorandom RNG with random seed
- Not all PRNG suitable for cryptography
- Cryptographically secure PRNG implementations use block ciphers or hash functions in practice
 - Infeasible to predict output bits

