

Sicherheit in Kommunikationsnetzen (Network Security)

Introduction

Dr.-Ing. Matthäus Wander

Universität Duisburg-Essen

Definitions

- Security ("Sicherheit" or "Angriffssicherheit")
 - Protect a system from threats
- Threat ("Bedrohung"): potential harm that might lead to the violation of a security goal
- Attack: a sequence of actions to realize a threat, i.e. an attempt to violate a security goal
- Subject of this lecture: network security
 - Protect a system from threats that involve the transmission of information over a computer network

Threat

- Note: threat ≠ thread
 - Threat: potential security harm
 - Thread: execution of program instructions (in the context of parallel computing or operating systems)
- Example security threats
 - Breaking into a corporate computer and copying data
 - Interception of emails in transit
 - Manipulation of payment orders sent over the network
 - Shutting down a website by temporary overloading
 - Impersonation as another person in online shopping

Out of scope of this lecture

- We won't cover all aspects of computer security
 - e.g. malware, phishing, code injection, privilege escalation, security bugs, forensics
- No safety ("Sicherheit" or "Betriebssicherheit")
 - Protect the environment/human from a system
 - e.g. an electronic machine with sharp blades
- Systems may have security **and** safety threats
 - e.g. exploit a car's network interface (security threat) to manipulate its driving functions (safety threat)
- No data privacy ("Datenschutz")

Matthäus Wander

Security Goals

- Two perspectives on security goals
- Application-specific security goals
 How the product manager sees it
- Technical security goals
 - How the engineer sees it

Application-specific Security Goals

Banking

- Protect from fraudulent or accidental modification of payment orders
- Identify and authorize customers
- Protect customer data from disclosure
- Electronic trading
 - Assure source and authenticity of trade orders
 - Protect corporate data
 - Provide legally binding electronic signatures on trades

Application-specific Security Goals (2)

- Government
 - Ensure privacy of citizen and corporate data
 - Protect from disclosure of state secrets
 - Provide electronic signatures on government documents
- University
 - Protect from disclosure of student and staff data
 - Ensure students cannot manipulate their grades
 - Deduct cafeteria payments from the proper student account

Technical Security Goals

- Confidentiality ("Vertraulichkeit")
 - Reveal transmitted or stored data only to an intended audience (i.e. to authorized persons)
 - Mechanism: encryption
- Data integrity ("Datenintegrität")
 - Detect any modification/manipulation of data
- Authenticity ("Authentizität")
 - Verify that the data originates from the real source
- Integrity and authenticity usually used together

Technical Security Goals (2)

- Availability ("Verfügbarkeit")
 - Services should be available and function correctly
- Accountability ("Zurechenbarkeit")
 - Identify the person responsible for an action ("who did this?")
- Non-repudiation ("Nichtabstreitbarkeit")
 - Ensure the person cannot dispute their action ("I never said that").

Risk Assessment

- Security is not a binary option
- Security measures increase the security level
 - But also costs and effort

("Password must be at least 10 characters long, consisting of numbers, mixed case and Egyptian hieroglyphics.")

- There is no perfectly secure system
 - But we can increase the security level to reduce the residual risk ("Restrisiko")

insecure

secure

Risk Assessment (2)

- Identify risks
 - Assets ("Güter"): what do we want to protect?
 - Threats: what threats do we face?
- For each risk scenario, estimate:
 - Impact/consequences ("how bad is it if it happens?")
 - Likelihood of occurrence (cost of attack)
 - Usually in qualitative categories, not an exact science (e.g. low/medium/high)
- Take appropriate security measures subject to risk assessment

Threat Model

- Where is the attacker located?
 - Is it a user on our server?
 - Inside of local network?
 - Along our communication path?
 - Anywhere else in the Internet?
- What are the capabilities of the attacker?

sbura-Essen

- Two classes of network attacks
 - Passive attacks
 - Active attacks

IVERSITÄT

Passive Attacks

- Alice and Bob communicate over a network
- Attacker Eve is eavesdropping (listening)
 - Sees packet headers and message contents
 - e.g. in public WiFi or at Internet access provider

Active Attacks

- Attacker Mallory actively sends messages
 - Impersonation: claim to be another participant
 - Replay: retransmit old messages
 - Spoofing: send forged messages
 - Denial of service: crash or overload a network service

Active Attacks (2)

- Man-in-the-middle attack
 - Drop messages
 - Modify messages before forwarding them
 - Delay or re-order messages
 - Intercept and replace messages
 - Mallory may impersonate herself as Alice or Bob

Model for Network Security

- Alice and Bob use a cryptographic algorithm to transform data when sending/receiving
- Messages are sent over an insecure channel

tät Duisburg–Essen Systeme

Model for Network Security (2)

- Alice and Bob have a secure channel to exchange cryptographic keys
 - But this channel is slow or expensive (e.g. in-person meeting, courier)

Model for Network Security (3)

• There may be a trusted third party (TTP)

Cryptography: Overview

Universität Duisburg–Essen Verteilte Systeme

Cryptography: Definitions

- Cryptography ("Kryptographie") is one of the building blocks to achieve a security goal
 - Derived from Greek κρυπτός (kryptós: "hidden") and γράφειν (gráphein: "writing")
 - Study of techniques to conceal a message (encryption) so that it cannot be read by unauthorized entities
- Cryptographic algorithm or primitive
 - Transforms input data (message, key) to output data
- Cryptographic protocol
 - Sequence of steps to perform a security function

Encryption and Decryption

- Cipher: algorithm for encryption and decryption
- Plaintext: original message
- Ciphertext: encrypted, unreadable message
- Secret key: information used to encrypt the plaintext and required to decrypt the ciphertext

Formalization of Encryption

- Secret key k: sequence of characters or bits
 Bits from {0, 1}; characters from an alphabet A
- Key space ${\boldsymbol{\mathcal K}}$: all possible keys k $\in {\boldsymbol{\mathcal K}}$
 - $\circ~$ Number of possible keys with n bits: $|\boldsymbol{\mathcal{K}}|\,=\,2^n$
 - $|\mathcal{K}| = |\mathcal{A}|^n$ e.g. with $\mathcal{A} := \{A, ..., Z\} \Rightarrow |\mathcal{K}| = 26^n$
- Plaintext m: sequence of characters or bits
 - Space of possible plaintext messages: ${oldsymbol{\mathcal{M}}}$
- Ciphertext c: sequence of character or bits
 - \circ Space of possible ciphertexts: ${m {\cal C}}$

Formalization of Encryption (2)

- Encryption function $\mathbf{e} : \mathcal{K} \times \mathcal{M} \to \mathcal{C}$
- Decryption function $d : \mathcal{K} \times \mathcal{C} \to \mathcal{M}$
- Short notation: we write $e_k(m) = c$ instead of e(k, m) = c
- $\bullet \ \mathsf{d}_k \text{ is the inverse function of } \mathsf{e}_k \qquad \text{for all } k \in \boldsymbol{\mathcal{K}}$
- Thus: $d_k(e_k(m)) = m$ for all $k \in \mathcal{K}$, $m \in \mathcal{M}$
- We transfer $e_k(m) = c$ over an insecure channel
 - Without knowledge of k, Eve cannot recover $d_k(c) = m$

Cryptanalysis

- Cryptanalysis ("Kryptoanalyse")
 - Study of techniques to break cryptographic algorithms
 - e.g. recover plaintext from ciphertext without key

Jniversität Duisburg–Essen /erteilte Systeme

24

Cryptanalysis (2)

- Implementation attacks
 - Side-channel attacks leak information about the implementation's execution state (and thus the key)
 - via e.g. CPU power consumption, ultrasonic noise, execution timings, cache timings
 - Usually requires physical access to machine
- Brute-force attack: exhaustive search
 - Attempt decryption with every possible key
 - Attacker is guaranteed to find correct key eventually
 - Practical remedy: use very large key space

Cryptanalysis (3)

- Mathematical analysis
 - Exploit properties of cryptographic algorithms, solve mathematical problems, find shortcuts
- There is no proof of security for most ciphers
 - How do we know they are secure enough?
 - We presume security if there is no feasible attack known yet
 - Once secure, now broken: DES, MD5, RC4, SHA-1

26

Kerckhoffs' Principle

- Idea: improve security by keeping the system design and its algorithms secret
 - This is called security by obscurity
 - Experience shows: systems get reverse-engineered
 - Systems relying on obscurity will be broken
- Kerckhoffs' principle:
 - System should be secure even if the attacker knows all details except for the key — Auguste Kerckhoffs
- Shannon's maxim:
 - The enemy knows the system Claude Shannon

Jniversität Duisburg–Essen /erteilte Systeme

What Cryptography is not: Steganography

- Steganography ("Steganographie")
 - Study of techniques to hide a message in an unsuspicious carrier medium (image, audio, video, ...)
 - Use cases: hidden messaging, digital watermarking
- Example: embed extra bits in image bitmap

- Can be combined with cryptography: first encrypt, then embed

Duisburg-Essen

Conclusions

- Security analysis always refers to a threat or security goal
- Confidence in cryptographic algorithms relies on amount of cryptanalysis by experts
 - Be skeptical against new or uncommon ciphers
- Encryption algorithms rely on secrecy of key
- Size of key space is a major security factor
- Weakest link of a security chain breaks
 - Algorithm may be secure, but implementation not