

Internet-Technologie & Web Engineering File Transfer Protocol (FTP)

Dr.-Ing. Matthäus Wander

Universität Duisburg-Essen

FTP: Overview

- IETF Internet Standard
 - Specified in RFC 959
- Reliable TCP-based file transfer
- Features: directory handling, access control, resuming partial transfers
- User logins but no encryption
 - Later extension: secure FTP connections with SSL/TLS
- Text-based protocol (but supports binary data)

Uniform Resource Locator

ftp://user:pw@example.net/path/file.txt

Network Protocol

Separate TCP connections for control and data

Control Connection

Control Connection (2)

- Test-based control connection
 - ASCII text as specified by TELNET protocol
- Client sends commands, server replies
 - Client: MKD foo
 - Server: 257 "foo" directory created
- Status code evaluated by client program
 - E.g. 257 = ok; 502 = syntax error
- Status text is auxiliary information for human

Data Connection

- Used for file transfer and directory listings
- Data types:
 - ASCII
 - 8-bit binary ("image")
- Opened/closed as needed
 - Usually new data connection for each file transfer
- TCP/IP endpoint signaled in control connection
 - Format: 132,252,181,48,212,91
 - IPv4 address and TCP port

Active Mode

Passive Mode

Why Separating Data and Control?

- Myth: allow multiple, simultaneous downloads
 - Fact: not supported by RFC 959
 - "... sending another command before the completion reply would be in violation of protocol; ..."
- Design choice dates back to 1971 (RFC310)
 - Bytes were not always 8 bit, TCP did not exist yet
 - Control must use 8-bit bytes (specified by TELNET)
 - Data connection may use another transport method and representation
 - E.g. PDP-10 works on 36-bit bytes

Problems of Data/Control Separation

- Today most clients are masqueraded by NAT
 - Active mode won't work, use passive mode

- TCP connection establishment incurs overhead
 - Significant with many small files
- New TCP connections start slow
 - Jacobson's slow start algorithm (cf. Rechnernetze)

FTP - Sample Session

```
220 (vsFTPd 2.3.5)
USER anonymous
331 Please specify the password.
PASS ********
230 Login successful.
PWD
257 ""
   [Get directory]
TYPE A
200 Switching to ASCII mode.
PASV
227 Entering Passive Mode (132,252,181,48,164,166).
LIST
150 Here comes the directory listing.
   [Download
   Waiting for server...]
226 Directory send OK.
```

FTP - Sample Session (2)

```
CWD debian
250 Directory successfully changed.
PWD
257 "/debian"
   [Get directory]
PASV
227 Entering Passive Mode (132,252,181,48,205,31).
LIST
150 Here comes the directory listing.
   [Download
   Waiting for server...]
226 Directory send OK.
TYPE I
200 Switching to Binary mode.
PASV
227 Entering Passive Mode (132,252,181,48,207,107).
RETR README
150 Opening BINARY mode data connection for README (1495 bytes).
   [Download]
   Waiting for server...]
226 Transfer complete.
```

FTP: Conclusion

- FTP is designed for reliable file transfers
- Suitable for local and wide area networks
- Outdated separation of data/control
 - Limits performance and connectivity
- User login but without encryption
 - Encapsulate in TLS
- Modern alternatives
 - SSH File Transfer Protocol
 - HTTPS and HTTP/2

Internet-Technologie & Web Engineering Trivial File Transfer Protocol (TFTP)

Dr.-Ing. Matthäus Wander

Universität Duisburg-Essen

TFTP: Overview

- IETF Internet Standard
 - Specified in RFC 1350
- Downgraded, simple version of FTP
 - No login, no authentication
 - No directory listings, no browsing
- Easy to implement
 - UDP transport only, no TCP
 - Good for tiny embedded systems or when booting operating system from network

File Download

UDP-based Network Protocol

- Server listens on UDP destination port 69
 - Client uses source port x
 - Server responds with random source port y
 - x and y identify a session/connection/transaction
- UDP is unreliable: packet loss possible
 - Acknowledge every data packet
 - Retransmit in case of timeout

UDP-based Network Protocol (2)

- ACK provides flow control
 - Send one packet, wait for response
 - Simplex stop and wait (cf. Rechnernetze lecture)
- Max 512 bytes data per datagram (plus headers)
 - Slow transfer, especially with high latency
- TFTP is a stateful protocol
 - Client/server keep track of what was sent before and what they expect next (e.g. sent #4, next is #5)
 - But: state is very small

Message Format

- Opcode determines packet type
- Mode: text or 8-bit binary
 - In text mode, host converts machine-specific charset to standard ASCII

TFTP: Conclusion

- TFTP is simple and easy to implement
- UDP-based, but handles packet loss
- Stop and wait approach is slow
 - Especially with high latency
- Suitable for local network, not for wide area
- No security mechanisms