UNIVERSITAT
R
DEUS | SSEBNU G

Distributed Systems
Operational Transformation

Dr.-Ing. Matthaus Wander

University Duisburg-Essen

Concurrency Control

e Locking
o Lock object before accessing it

o Conflicting operations will wait

e Transactions

o Lock access to multiple objects in the right order

e Optimistic concurrency control

o Don‘t lock, but abort&retry transaction on conflict

e Problem solved, right?

o What if conflicts are common in our application?

uuuuuuuuu At
DEUS 1 SSEBNU RG

Example: Etherpad

o Multiple users editing text at the same time

B I US|i=i=eE9C @ & O vp L¥< R 1

s

1| ##HF header
Welcome to Etherpad Lite!
2| This padtesxtis synchronized as you type, so that everyone viewing this page sees

the same text. This allows you to collaborate seamlessly on documents! é___a

Etherpad Lite on Github: hitpJ/. mplep-lite

€/> 7| Humis anyone there? Yes, There is! Well this looks good. anyone else here?
Wow this is a really nice pad!

2| trying the service so, how good is this? seems nice.!
12| lalalalalallal This has great influence on people!

ki

&

m

12| We're massively greatful for your support
12 lallalallalall

1= | asthisis no more of any importance,

17| we could acutally remove it.

Chat @0 | .

UNIVERSITAT

DEUS 1 SSEBNU RG

Groupware

e Groupware or collaborative software

o Multiple users working in a session on the same data

e Properties:
o Distributed system with replicated data
o Same user interface
o Eventually consistent view on the same data

o Highly-interactive (response user interface)

@)

Real-time (user actions quickly update others® views)

o Collaboration (users are working together)

uuuuuuuuu At
DEUS 1 SSEBNU RG

System Model

e Each user has view on her copy of data
o Changes made locally quickly change the local view
o Changes are distributed peer-to-peer or server-based

o Document changes are distributed as operations

usE=m g oco Ok ot
s Searieesh on socumint
i
e coua s
ot @

UNIVERSITAT

B/ usE=mz/oc o
| Welcome toEmerpad el
peaple

DEUS 1 SSEBNU RG

Comparison with other Concurrency Control

e Why not locking or transactions?
o Network delay when waiting for lock
o Waiting time until data unlocks

o Slow, unresponsive user interface ®
o Breaks high interactivity
e Why not optimistic concurrency control?

o Conflicts typical during collaborative editing
o Transaction abort = user action reverted

o Frustrating collaboration ®

uuuuuuuuu AT
DEUS 1 SSEBNU RG

System Model (2)

e Groupware system G = <S§, O>

o S: set of sites
i.e. application instances running on user machines

o O: set of parametrized operators
i.e. possible operations on data

e Each site consists of:
o Application process

o Site object, i.e. copy the shared data

o Unique site identifier

uuuuuuuuu At
DEUS 1 SSEBNU RG

System Model (3)

o Example: sites {S,, S,, S;} edit a text string
o Two operators {O,, O,}
o O, :=insert[X; P] insert character X at position P

o O, := delete[P] delete character at position P

e We apply instances of operations on our data
o Say we have 0:=0,[x; 3]
o Assume position index starts at 1

o 0("abc") gives us "abxc"

uuuuuuuuu At
DEUS 1 SSEBNU RG

Site Activities

e Operation generation

o User actions generate operation requests, which are
broadcasted to other sites

e Operation reception

o Sites listen and receive operation requests from other
sites

e Operation execution

o Sites execute operation requests on their site object

UNIVERSITAT
DEUS 1 SSEBNU RG

Assumptions

1. The number of sites is constant
o Users can‘t join/leave while the algorithm is running

o A usable system will have to relax this assumption

2. Messages are received exactly once and
without error

o Algorithm does not assume FIFO ordering

3. It is not possible for a message to be executed
before it is generated

uuuuuuuuu At
DEUS 1 SSEBNU RG

Precedence

e Given two operations o, p at one site:

o 0-2p, iff owas generated before p

0 P
® ®

e Given two operations o, p at two sites s, t:

o 0=2p, iff owas generated at s
and executed at ¢t before p was generated at ¢

gen. and exec. 0

S

exec. 0 en.
‘ g.p

uuuuuuuuu At
DEUS 1 SSEBNU RG

Properties and Correctness

e Precedence Property:

o For all o, pwith o> p, all sites execute o before p

e Definition: groupware session is quiescent if all
generated operations have been executed

o i.e. no pending requests; system waiting for input
e Convergence Property:

o When quiescent, data objects are identical at all sites

e Groupware system is correct iff precedence and
convergence properties are satisfied

uuuuuuuuu At
DEUS 1 SSEBNU RG

Precedence vs. Responsiveness

e As long as we adhere to the partial ordering of
precedence, our system will be correct

e Use logical clocks or snapshot algorithm?
o Agree on a total order by exchanging timestamps
o Some coordination between sites required

o Introduces delay = unresponse application ®

e We need to execute operations as quickly as
possible

uuuuuuuuu At
DEUS 1 SSEBNU RG

Problem: Overlapping Operations

o Can we execute operations instantly on
generation and reception?

o e.g. o.=delete[3], p-=delete[2] on "abcd"
p(o("abcd") = p("abd") = "ad"

N VA
p(o("abcd") = p("abd") = "ad"

o Sometimes yes, but in general no

o Overlapping, non-commutative operations:
0 p(o("ade") = p("abd") = "ad"

P
B{y‘ o(p("abcd") = o("acd") = "ac"

uuuuuuuuu AT
DEUS 1 SSEBNU RG

Operational Transformation Algorithm

e Upon operation generation (due to user action):

o Execute the operation locally

o Send operation to all other sites

e Upon operation reception:

o Has the sender executed another —i\\
operation that the receiver has not? fkﬂ
Future op. = enqueue and wait enqueue

o Has the receiver executed another
operation that the sender has not?
Past op. = transform and execute

transform
o Otherwise = execute

uuuuuuuuu AT
DEUS 1 SSEBNU RG

Operational Transformation Algorithm (2)

e How long do we have to wait?

o How do we know which future operations we need?

o Use state vector to find out

o A type of vector clocks, which give us the whole
history of events that happened before an event e

o Send state vector together with operation o, which
indicates which operations happened before o

SV(0) (b

uuuuuuuuu At
DEUS 1 SSEBNU RG

Operational Transformation Algorithm (3)

e SV(s): state vector for site s
e SV(s)[/]: ~th component indicates number of
operations from / that were executed at site s
o Beware: slightly different semantics than vector clocks
o Increment only upon execution, not send/receive

o Generate: send SV(s) 0

o Receive: no change

o s executes ofrom ¢:
- SV(s)[t] := SV(s)[t] + 1

OO0 OO0 OO0

uuuuuuuuu AT
DEUS 1 SSEBNU RG

Operational Transformation Algorithm (3)

o SV(s): state vector for site s

e SV(s)[/]: ~th component indicates number of
operations from / that were executed at site s
o Beware: slightly different semantics than vector clocks

o Increment only upon execution, not send/receive

o Generate: send SV(s)

o Receive: no change

N

o s executes ofrom ¢:
- SV(s)[t] := SV(s)[t] + 1

\

OO0 OO0 O0O0O0o

uuuuuuuuu AT
DEUS 1 SSEBNU RG

Operational Transformation Algorithm (3)

e SV(s): state vector for site s
e SV(s)[/]: ~th component indicates number of
operations from / that were executed at site s
o Beware: slightly different semantics than vector clocks
o Increment only upon execution, not send/receive

o Generate: send SV(s) 0

o Receive: no change

N
/
]
O O O
]

o s executes ofrom ¢:
- SV(s)[t] := SV(s)[t] + 1

|
OOO| lOOO o o
1
o oo
(I

uuuuuuuuu AT
DEUS 1 SSEBNU RG

Operational Transformation Algorithm (3)

e SV(s): state vector for site s
e SV(s)[/]: ~th component indicates number of
operations from / that were executed at site s
o Beware: slightly different semantics than vector clocks
o Increment only upon execution, not send/receive

o Generate: send SV(s)

o Receive: no change

o s executes ofrom ¢:
- SV(s)[t] := SV(s)[t] + 1

\ N

exec

OO0 OO0 OO0

uuuuuuuuu AT
DEUS 1 SSEBNU RG

Operational Transformation Algorithm (4)

e When to execute? Site s receives o from t:
o If SV(s) < SV(o) or SV(s) || SV(0): enqueue and wait
If SV(s) = SV(0): execute

If SV(s) > SV(0): transform and execute

@)

@)

o Generate: send SV(s)

@)

Receive: no change

o s executes ofrom t:
- SV(s)[t] := SV(s)[t] + 1

OO0 OO0 O0O0O0o

uuuuuuuuu At
DEUS 1 SSEBNU RG

Operational Transformation Algorithm (4)

e When to execute? Site s receives o from t:
o If SV(s) < SV(o) or SV(s) || SV(0): enqueue and wait
o| If SV(s) = SV(0): execute

If SV(s) > SV(0): transform and execute

@)

o Generate: send SV(s)

@)

Receive: no change

o s executes ofrom t:
- SV(s)[t] := SV(s)[t] + 1

i

|
©CoO0 00O 00O

D

>

@
CEO :
o Oor
L |

uuuuuuuuu At
DEUS 1 SSEBNU RG

Operational Transformation Algorithm (4)

e W

0]

@)

@)

0]

IIIIIIIII A

nen to execute? Site s receives o from t:

If SV(s) < SV(0) or SV(s) || SV(0): enqueue and wait

If SV(s) = SV(0): execute

If SV(s) > SV(0): transform and execute

Generate: send SV(s)

Receive: no change

s executes o from t:
- SV(s)[t] := SV(s)[t] + 1

9/
<«

|
oNoNe OOO| IOOO
)
Pa
q»)
(@)
1
o NeN
(I

T
DUISBURG w

ESSEN

Operational Transformation Algorithm (4)

e When to execute? Site s receives o from t:
o If SV(s) < SV(o) or SV(s) || SV(0): enqueue and wait
o| If SV(s) = SV(0): execute

If SV(s) > SV(0): transform and execute

@)

o Generate: send SV(s)

@)

Receive: no change

o s executes ofrom t:
- SV(s)[t] := SV(s)[t] + 1

/

|
oNoNe OOO| IOOO
)
Pa
q»)
(@)
1
o NeN
(I

uuuuuuuuu At
DEUS 1 SSEBNU RG

Operational Transformation Algorithm (4)

e When to execute? Site s receives o from t:
o If SV(s) < SV(o) or SV(s) || SV(0): enqueue and wait
o| If SV(s) = SV(0): execute

If SV(s) > SV(0): transform and execute

@)

o Generate: send SV(s)

@)

Receive: no change

o s executes ofrom t:
- SV(s)[t] := SV(s)[t] + 1

uuuuuuuuu At
DEUS 1 SSEBNU RG

||
O O O OOOI lOOO
D
X
(¢)]
.V
/
H

_______ exec Lexec

Operational Transformation Algorithm (5)

e When to execute? Site s receives o from t:
o If SV(s) < SV(o) or SV(s) || SV(0): enqueue and wait
o| If SV(s) = SV(0): execute

If SV(s) > SV(0): transform and execute

@)

Another example

@)

0]

Assume an operation

processed here ~

AR

o
Xec

OO0 OO0 O0O0O0o

uuuuuuuuu At
DEUS 1 SSEBNU RG

Operational Transformation Algorithm (5)

e When to execute? Site s receives o from t:

o| If SV(s) < SV(0) or SV(s) || SV(0): enqueue and wait

@)

If SV(s) = SV(0): execute

If SV(s) > SV(0): transform and execute

@)

Another example

@)

0]

Assume an operation

processed here ~

9/
i

|
oNoNe OOO| IOOO
)
Pa
q»)
(@)
1
o NeN
(I

uuuuuuuuu At
DEUS 1 SSEBNU RG

Operational Transformation Algorithm (5)

e When to execute? Site s receives o from t:
o If SV(s) < SV(o) or SV(s) || SV(0): enqueue and wait
If SV(s) = SV(0): execute

ol If SV(s) > SV(0): transform and execute

@)

Another example

@)

0]

Assume an operation

processed here ~

|
]
= O O
L=
|-/
|
|
|
|
|
Ib}é
P O P
/[

|
oNoNe OOO| IOOO
)
Pa
q»)
(@)
1
o NeN
(I

uuuuuuuuu ar texec
D.UISEBURG

Operational Transformation Algorithm (5)

e When to execute? Site s receives o from t:
o If SV(s) < SV(o) or SV(s) || SV(0): enqueue and wait
If SV(s) = SV(0): execute

ol If SV(s) > SV(0): transform and execute

@)

Another example

@)

| |
D
X
D
@)
1
o O
L |

0]

Assume an operation

1 1
processed here [o [1}
eXec \wait ~ trans —trans

uuuuuuuuu it +exec +exec
DUISBURG w

[
OOOl lOOO o OO
1
— OO
L |

Operational Transformation Algorithm (6)

e Site s generates operation p
o Send SV(p):=SV(s) to all other sites

e Then executes p locally

o Which updates SV(s) after sending p
o SV(s)[s] := SV(s)[s] + 1

e Can execute local
operation p always,

even if received
operations are queued

J. ,

o Because SV(s) = SV(p)

uuuuuuuuu AT
DEUS 1 SSEBNU RG

N |
oNoNe Ooolloool
D
>
o)
.V
72

Walt exec

Transformation Matrix

e Two operations o, p are not commutative

o i.e. different order yields different data

e Transform o, p into new operation o‘or p*

o If two sites execute o and p concurrently, they then
execute a transformed o, p‘ to get the same result

o p':=T(p, 0) o' := T(o, p)

0]

Site s executes o, transforms p, executes p*
o Site t executes p, transforms o, executes o

o It holds: p‘(o(data)) = o‘(p(data))

uuuuuuuuu AT
DEUS 1 SSEBNU RG

Transformation Matrix (2)

e We need a transformation for any two operators

e Example: two operators {O,, O,}

o O, :=insert[X; P] insert character X at position P
o O, := delete[P] delete character at position P
T O,: insert O,: delete
O,: insert T4 T,
O,: delete T, T,,

e The matrix is application-specific and grows
with each new operator

o Quite complex implementation

uuuuuuuuu AT
DEUS 1 SSEBNU RG

Example: Transform Insert/Insert

e 0 :=insert[X,; P,] insert X, at position P,

of := Ty (0, p)
it P, < Py:
// insert char left of p: no change
o‘ := insert[X,; P,]

else 1t P, > P,:
// insert char right of p: position + 1

o‘ := insert[X,; P, + 1]
else:
// 1dentical operations cancel each other out
it X, = X!
o‘ := 1dentity() // do nothing
else:

.. // use some tie-breaking mechanism

uuuuuuuuu At
DEUS 1 SSEBNU RG

Example: Transform Insert/Insert (2)

e 0 = insert[A; 1], p := insert[B; 2]
o 0':=Ti(0, p) = insert[A; 1]
o p':=T;(p, 0) = insert[B; 3]
o 0'(p("xyz")) = o'("xByz") = "AxByZz"
o p'(o("xyz") = p‘("Axyz") = "AxByz"
e 0 := insert[W; 1], p := insert[W; 1]
o 0':=T,(0, p) = identity()
o p':=T,,(p, 0) = identity()
o 0'(p("xyz")) = 0'("Wxyz") = "Wxyz"
o p(o("xyz") = p'("Wxyz") = "Wxyz"

DEUS | SSEBNU RG w

Conclusions

e Operational Transformation is optimistic
concurrency control without aborts

o Conflicting operations are transformed

o Suitable for highly-interactive applications like
groupware

e Algorithm is generic, but transformation matrix
is application-specific

o Algorithm fails to converge in certain scenarios

o Problem (,TP2 convergence®) solved by later
algorithms

uuuuuuuuu AT
DEUS 1 SSEBNU RG

