
Distributed Systems
Operational Transformation

Dr.-Ing. Matthäus Wander

University Duisburg-Essen

Concurrency Control

∙ Locking

∘ Lock object before accessing it

∘ Conflicting operations will wait

∙ Transactions

∘ Lock access to multiple objects in the right order

∙ Optimistic concurrency control

∘ Don‘t lock, but abort&retry transaction on conflict

∙ Problem solved, right?

∘ What if conflicts are common in our application?

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 2

Example: Etherpad

∙ Multiple users editing text at the same time

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 3

Groupware

∙ Groupware or collaborative software

∘ Multiple users working in a session on the same data

∙ Properties:

∘ Distributed system with replicated data

∘ Same user interface

∘ Eventually consistent view on the same data

∘ Highly-interactive (response user interface)

∘ Real-time (user actions quickly update others‘ views)

∘ Collaboration (users are working together)

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 4

System Model

∙ Each user has view on her copy of data

∘ Changes made locally quickly change the local view

∘ Changes are distributed peer-to-peer or server-based

∘ Document changes are distributed as operations

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 5

Comparison with other Concurrency Control

∙ Why not locking or transactions?

∘ Network delay when waiting for lock

∘ Waiting time until data unlocks

∘ Slow, unresponsive user interface 

∘ Breaks high interactivity

∙ Why not optimistic concurrency control?

∘ Conflicts typical during collaborative editing

∘ Transaction abort ⇨ user action reverted

∘ Frustrating collaboration 

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 6

System Model (2)

∙ Groupware system G = <S, O>

∘ S: set of sites
i.e. application instances running on user machines

∘ O: set of parametrized operators
i.e. possible operations on data

∙ Each site consists of:

∘ Application process

∘ Site object, i.e. copy the shared data

∘ Unique site identifier

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 7

System Model (3)

∙ Example: sites {S1, S2, S3} edit a text string

∘ Two operators {O1, O2}

∘ O1 := insert[X; P] insert character X at position P

∘ O2 := delete[P] delete character at position P

∙ We apply instances of operations on our data

∘ Say we have o:=O1[x; 3]

∘ Assume position index starts at 1

∘ o("abc") gives us "abxc"

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 8

Site Activities

∙ Operation generation

∘ User actions generate operation requests, which are
broadcasted to other sites

∙ Operation reception

∘ Sites listen and receive operation requests from other
sites

∙ Operation execution

∘ Sites execute operation requests on their site object

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 9

Assumptions

1. The number of sites is constant

∘ Users can‘t join/leave while the algorithm is running

∘ A usable system will have to relax this assumption

2. Messages are received exactly once and
without error

∘ Algorithm does not assume FIFO ordering

3. It is not possible for a message to be executed
before it is generated

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 10

Precedence

∙ Given two operations o, p at one site:

∘ o →p, iff o was generated before p

∙ Given two operations o, p at two sites s, t :

∘ o →p, iff o was generated at s
and executed at t before p was generated at t

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 11

s

t

gen. and exec. o

exec. o gen. p

o p

Properties and Correctness

∙ Precedence Property:

∘ For all o, p with o →p, all sites execute o before p

∙ Definition: groupware session is quiescent if all
generated operations have been executed

∘ i.e. no pending requests; system waiting for input

∙ Convergence Property:

∘ When quiescent, data objects are identical at all sites

∙ Groupware system is correct iff precedence and
convergence properties are satisfied

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 12

Precedence vs. Responsiveness

∙ As long as we adhere to the partial ordering of
precedence, our system will be correct

∙ Use logical clocks or snapshot algorithm?

∘ Agree on a total order by exchanging timestamps

∘ Some coordination between sites required

∘ Introduces delay ⇨ unresponse application 

∙ We need to execute operations as quickly as
possible

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 13

Problem: Overlapping Operations

∙ Can we execute operations instantly on
generation and reception?

∘ e.g. o:=delete[3], p:=delete[2] on "abcd"

∘ Sometimes yes, but in general no

∘ Overlapping, non-commutative operations:

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 14

o p

p(o("abcd") = p("abd") = "ad"

o(p("abcd") = o("acd") = "ac"

o
p

p(o("abcd") = p("abd") = "ad"

p(o("abcd") = p("abd") = "ad"

Operational Transformation Algorithm

∙ Upon operation generation (due to user action):

∘ Execute the operation locally

∘ Send operation to all other sites

∙ Upon operation reception:

∘ Has the sender executed another
operation that the receiver has not?
Future op. ⇨ enqueue and wait

∘ Has the receiver executed another
operation that the sender has not?
Past op. ⇨ transform and execute

∘ Otherwise ⇨ execute

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 15

enqueue

transform

Operational Transformation Algorithm (2)

∙ How long do we have to wait?

∘ How do we know which future operations we need?

∙ Use state vector to find out

∘ A type of vector clocks, which give us the whole
history of events that happened before an event e

∘ Send state vector together with operation o, which
indicates which operations happened before o

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 16

SV(o)

Operational Transformation Algorithm (3)

∙ SV(s): state vector for site s

∙ SV(s)[i]: i-th component indicates number of
operations from i that were executed at site s

∘ Beware: slightly different semantics than vector clocks

∘ Increment only upon execution, not send/receive

∘ Generate: send SV(s)

∘ Receive: no change

∘ s executes o from t :

• SV(s)[t] := SV(s)[t] + 1

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 17

0

0

0

0

0

0

0

0

0

Operational Transformation Algorithm (3)

∙ SV(s): state vector for site s

∙ SV(s)[i]: i-th component indicates number of
operations from i that were executed at site s

∘ Beware: slightly different semantics than vector clocks

∘ Increment only upon execution, not send/receive

∘ Generate: send SV(s)

∘ Receive: no change

∘ s executes o from t :

• SV(s)[t] := SV(s)[t] + 1

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 18

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Operational Transformation Algorithm (3)

∙ SV(s): state vector for site s

∙ SV(s)[i]: i-th component indicates number of
operations from i that were executed at site s

∘ Beware: slightly different semantics than vector clocks

∘ Increment only upon execution, not send/receive

∘ Generate: send SV(s)

∘ Receive: no change

∘ s executes o from t :

• SV(s)[t] := SV(s)[t] + 1

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 19

0

0

0 0

0

0

0

0

0

0

0

0 0

0

0

Operational Transformation Algorithm (3)

∙ SV(s): state vector for site s

∙ SV(s)[i]: i-th component indicates number of
operations from i that were executed at site s

∘ Beware: slightly different semantics than vector clocks

∘ Increment only upon execution, not send/receive

∘ Generate: send SV(s)

∘ Receive: no change

∘ s executes o from t :

• SV(s)[t] := SV(s)[t] + 1

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 20

0

0

0 1

0

0

0

0

0

0

0

0 1

0

0

exec

exec

Operational Transformation Algorithm (4)

∙ When to execute? Site s receives o from t:

∘ If SV(s) < SV(o) or SV(s) || SV(o): enqueue and wait

∘ If SV(s) = SV(o): execute

∘ If SV(s) > SV(o): transform and execute

∘ Generate: send SV(s)

∘ Receive: no change

∘ s executes o from t :

• SV(s)[t] := SV(s)[t] + 1

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 21

0

0

0

0

0

0

0

0

0

Operational Transformation Algorithm (4)

∙ When to execute? Site s receives o from t:

∘ If SV(s) < SV(o) or SV(s) || SV(o): enqueue and wait

∘ If SV(s) = SV(o): execute

∘ If SV(s) > SV(o): transform and execute

∘ Generate: send SV(s)

∘ Receive: no change

∘ s executes o from t :

• SV(s)[t] := SV(s)[t] + 1

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 22

0

0

0

0

0

0

0

0

0

1

0

0exec

Operational Transformation Algorithm (4)

∙ When to execute? Site s receives o from t:

∘ If SV(s) < SV(o) or SV(s) || SV(o): enqueue and wait

∘ If SV(s) = SV(o): execute

∘ If SV(s) > SV(o): transform and execute

∘ Generate: send SV(s)

∘ Receive: no change

∘ s executes o from t :

• SV(s)[t] := SV(s)[t] + 1

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 23

0

0

0

0

0

0

0

0

0

1

0

0exec

wait

Operational Transformation Algorithm (4)

∙ When to execute? Site s receives o from t:

∘ If SV(s) < SV(o) or SV(s) || SV(o): enqueue and wait

∘ If SV(s) = SV(o): execute

∘ If SV(s) > SV(o): transform and execute

∘ Generate: send SV(s)

∘ Receive: no change

∘ s executes o from t :

• SV(s)[t] := SV(s)[t] + 1

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 24

0

0

0

0

0

0

0

0

0

1

0

0exec

1

0

0

execwait

Operational Transformation Algorithm (4)

∙ When to execute? Site s receives o from t:

∘ If SV(s) < SV(o) or SV(s) || SV(o): enqueue and wait

∘ If SV(s) = SV(o): execute

∘ If SV(s) > SV(o): transform and execute

∘ Generate: send SV(s)

∘ Receive: no change

∘ s executes o from t :

• SV(s)[t] := SV(s)[t] + 1

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 25

0

0

0

0

0

0

0

0

0

1

0

0exec

1

0

0

execwait exec

1

1

0

Operational Transformation Algorithm (5)

∙ When to execute? Site s receives o from t:

∘ If SV(s) < SV(o) or SV(s) || SV(o): enqueue and wait

∘ If SV(s) = SV(o): execute

∘ If SV(s) > SV(o): transform and execute

∘ Another example

∘ Assume an operation
processed here

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 26

0

0

0

0

0

0

0

0

0

1

0

0exec

exec

0

0

1

Operational Transformation Algorithm (5)

∙ When to execute? Site s receives o from t:

∘ If SV(s) < SV(o) or SV(s) || SV(o): enqueue and wait

∘ If SV(s) = SV(o): execute

∘ If SV(s) > SV(o): transform and execute

∘ Another example

∘ Assume an operation
processed here

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 27

0

0

0

0

0

0

0

0

0

1

0

0exec

exec

0

0

1

wait

Operational Transformation Algorithm (5)

∙ When to execute? Site s receives o from t:

∘ If SV(s) < SV(o) or SV(s) || SV(o): enqueue and wait

∘ If SV(s) = SV(o): execute

∘ If SV(s) > SV(o): transform and execute

∘ Another example

∘ Assume an operation
processed here

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 28

0

0

0

0

0

0

0

0

0

1

0

0exec

exec

0

0

1

wait

1

0

1

trans

+exec

Operational Transformation Algorithm (5)

∙ When to execute? Site s receives o from t:

∘ If SV(s) < SV(o) or SV(s) || SV(o): enqueue and wait

∘ If SV(s) = SV(o): execute

∘ If SV(s) > SV(o): transform and execute

∘ Another example

∘ Assume an operation
processed here

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 29

0

0

0

0

0

0

0

0

0

1

0

0exec

exec

0

0

1

wait

1

0

1

trans

+exec

trans

+exec

1

1

1

Operational Transformation Algorithm (6)

∙ Site s generates operation p

∘ Send SV(p):=SV(s) to all other sites

∙ Then executes p locally

∘ Which updates SV(s) after sending p

∘ SV(s)[s] := SV(s)[s] + 1

∙ Can execute local
operation p always,
even if received
operations are queued

∘ Because SV(s) = SV(p)

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 30

0

0

0 1

0

0

0

0

0

0

0

0

exec

exec

0

0

1

wait

Transformation Matrix

∙ Two operations o, p are not commutative

∘ i.e. different order yields different data

∙ Transform o, p into new operation o‘ or p‘

∘ If two sites execute o and p concurrently, they then
execute a transformed o‘, p‘ to get the same result

∘ p‘ := T(p, o) o‘ := T(o, p)

∘ Site s executes o, transforms p, executes p‘

∘ Site t executes p, transforms o, executes o‘

∘ It holds: p‘(o(data)) = o‘(p(data))

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 31

Transformation Matrix (2)

∙ We need a transformation for any two operators

∙ Example: two operators {O1, O2}

∘ O1 := insert[X; P] insert character X at position P

∘ O2 := delete[P] delete character at position P

∙ The matrix is application-specific and grows
with each new operator

∘ Quite complex implementation

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 32

T O1: insert O2: delete

O1: insert T11 T12

O2: delete T21 T22

Example: Transform Insert/Insert

∙ o := insert[Xo; Po] insert Xo at position Po

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 33

o‘ := T11(o, p):
if Po < Pp:
// insert char left of p: no change
o‘ := insert[Xo; Po]

else if Po > Pp:
// insert char right of p: position + 1
o‘ := insert[Xo; Po + 1]

else:
// identical operations cancel each other out
if Xo = Xp:
o‘ := identity() // do nothing

else:
… // use some tie-breaking mechanism

Example: Transform Insert/Insert (2)

∙ o := insert[A; 1], p := insert[B; 2]

∘ o‘ := T11(o, p) = insert[A; 1]

∘ p‘ := T11(p, o) = insert[B; 3]

∘ o‘(p("xyz")) = o‘("xByz") = "AxByz"

∘ p‘(o("xyz")) = p‘("Axyz") = "AxByz"

∙ o := insert[W; 1], p := insert[W; 1]

∘ o‘ := T11(o, p) = identity()

∘ p‘ := T11(p, o) = identity()

∘ o‘(p("xyz")) = o‘("Wxyz") = "Wxyz"

∘ p‘(o("xyz")) = p‘("Wxyz") = "Wxyz"

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 34

Conclusions

∙ Operational Transformation is optimistic
concurrency control without aborts

∘ Conflicting operations are transformed

∘ Suitable for highly-interactive applications like
groupware

∙ Algorithm is generic, but transformation matrix
is application-specific

∘ Algorithm fails to converge in certain scenarios

∘ Problem („TP2 convergence“) solved by later
algorithms

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander 35

