UNIVERSITAT

R
DEUs I SSEBNU G

Distributed Systems
Middleware Examples

Dr.-Ing. Matthaus Wander

Universitat Duisburg-Essen

A%

Java RMI

e Distributed Objects System

e Remote Method Invocation (RMlI)

o At-most-once semantics

e Integrated into Java
o Relatively easy to use
o Does not use an IDL

o Not compatible with platforms other than Java

uuuuuuuuu At
DEUS 1 SSEBNU RG

System Architecture

L Registry J
R

/ \
/
/7 \
o7 4 Server)
//
// .
(" Client) ! Object
¢ i
Stub > Skeleton
" O ’J

uuuuuuuuu At
DEUS 1 SSEBNU RG

Layers

o Stub/Skeleton [Client] [Server]
o Stub: client proxy object { {
_ [Stub][Skeleton]
o Skeleton: server dispatcher . \
and proxy object Remote Reference Layer
o (Un-)Marshalling L Transport

e Remote Reference Layer
o Translates between local/remote references

o Object activation

e Transport

o Connection handling, network transmission

UNIVERSITAT
DEUS 1 SSEBNU RG

Remote Object

e Remote object resides on server and is accessed
oy client(s) via RMI middleware

e Remote object implements a Java interface
o Must extend java.rmi.Remote

o Remote is an empty interface, serves as marker that
this object will be treated different from local objects

o Server exports remote object

o Creates proxy (,skeleton”), opens listening socket

= How does the client locate the remote object?

uuuuuuuuu AT
DEUS 1 SSEBNU RG

Naming / Registry

e Server binds remote objects at a registry

o Under a given name

o registry = LocateRegistry.getRegistry (2223)

o registry.bind("ChatService", remoteObj) ;

e Registry can run on server host or another host

o Holds references to remote objects, including TCP/IP
endpoints

o Practical problem: server must know its own IP
address when binding object (may fail with multiple IP
addresses or NAT)

UNIVERSITAT
DEUS 1 SSEBNU RG

Client Lookup

e Client looks up remote object by registry host +
port + object name

o Can be looked up by URL (via java.rmi.Naming)
o E.g.,//debby.vs.uni-due.de:2223/ChatService"

o Registry lookup returns object of type ,Remote”

o Cast to interface of remote object

o chatService = (ChatService) registry.lookup ("ChatService")

e RMI middleware automatically creates proxy
(,stub®) for remote objects

o Client must know the interface of the remote object

uuuuuuuuu AT
DEUS 1 SSEBNU RG

Parameter Passing

o All parameters and return value must be serializable
o Applies to primitives (int, long, double, ...)

o Applies to most standard classes (List, Set, Map, ...)

e Custom classes must implement java./o.Serializable
interface

o Empty interface, usually works without extra code

e Java serializer uses reflection to serialize object

o Goes through all object fields, serializes each

o Throws exception with non-serializable data (e.qg. file
handle, socket)

UNIVERSITAT
DEUS 1 SSEBNU RG

Parameter Passing

4)
~\ Server
[Client remote invocation
> +Foobar(ChatMessage)
) \ Y,

public class ChatMessage implements Serializable ({
public String nickname;
public String message;

}

e Parameters are copied to server, but changes
are not sent back to client!

o Call-by-value semantics, although objects are passed
with call-by-reference in local methods

UNIVERSITAT
DEUS 1 SSEBNU RG

Parameter Passing

4)
~\ Server
. remote invocation
Client > +Foobar(RemoteFoo)
N & J
N\ 7

N ¥ 4

T RemoteFoo]L

e Remote object references can be also passed as
parameters to the server

o Reference (the stub) is copied and transmitted
o Stub contains IP endpoint = distribution transparency

o Remember: actual object resides on one server,
independent of number of references to it

UNIVERSITAT
DEUS 1 SSEBNU RG

Code Distribution

e Clients and servers both need to know:
o The interface of the remote object
o Implementation of all parameters and return types

= How to distribute code (.class files)?

e Deploy same .class files with clients and servers

o Problem: software updates, protocol updates

e Dynamic code loading

p
[Client } Web server
Download[RemoteFoo.class

UNIVERSITAT
DEUS 1 SSEBNU RG

Exception Handling

public interface ChatService extends Remote ({
public ChatContext login(String nickname) throws RemoteException;

}

e Methods of a remote object interface may throw
a RemoteException

o When distribution transparency fails, e.g. server down

o Thrown by stub, must be handled by client

e Server may throw exceptions, too
o All exceptions are serializable

o Transfered over network, thrown by stub

UNIVERSITAT
DEUS 1 SSEBNU RG

Push Event from Server to Client

e How to notify the client when a server event has
nappened?

e Polling: client reqgularly asks server

e Callback: server invokes method on client

o Client must pass remote object stub to server

) g Server)
Client
>+login(callback)
Remote \ — /
Object event

uuuuuuuuu AT
DEUS 1 SSEBNU RG

Network Address Translation

e RMI uses TCP as transport
o Remote objects are accessed via a TCP connection

o Clients usually behind NAT router = callback fails

4)
A : Server
Client :
: >+login(callback)
R I \§ J
emote }(—
Object] | event
|

uuuuuuuuu At
DEUS 1 SSEBNU RG

Garbage Collection

e Java uses Garbage Collection (GC) to remove no
longer needed objects

= How to remove old remote objects?

o Reference counting

e Client stubs inform server of remote reference

o ,referenced” message transfered over network

o When client GC removes stub = send ,unreferenced”

_] referenced
[Client J Server

uuuuuuuuu AT
DEUS 1 SSEBNU RG

Garbage Collection

e How to deal with client crashes?

e Remote objects have a lease time
o Clients must actively renew their lease

o Happens automatically by RMI middleware
e Lease expires = server unreferences object

e O references = object is removed by server GC

uuuuuuuuu At
DEUS 1 SSEBNU RG

Conclusion

e RMI integrated into Java language

o Platform-specific (no generic IDL)

e Distribution visible to application developer

o Remote interface, RemoteException handling

e Behaves mostly like local method calls
o But: no call-by-reference for serialized parameters
e Practical problems:

o Does not work well with NAT (e.g. client callbacks)

o Not very efficient (e.g. reflection is rather slow)

uuuuuuuuu AT
DEUS 1 SSEBNU RG

Tuple Spaces / JavaSpaces

e Model for building distributed systems

o Tuple Spaces: generic concept
o JavaSpaces: Java-specific implementation

o Jini / Apache River: middleware for JavaSpaces
e Put data entries into a shared space

e Get notifications about new entries

Process ProcessJ Process
N

J
’ ~
\‘I N J
® ® .
IIIIIIIII AT
DEUS | SSEBNU RG

Concept

e Distributed shared space

e Atomic operations

o Write(): put entry into space (no overwrite!)
o Read(): get copy of entry
o Take(): get copy of entry and remove it

e What is an entry? Serializable object

e How to modify an entry?
o Take, modify local copy, write

= implicit synchronization, no locking or coordination
necessary

uuuuuuuuu At
DEUS 1 SSEBNU RG

Example Use Case: Distributed Computing

e Master writes tasks into space and takes results

e Workers take tasks and write results

(waiting)
\& W {compuung}
. worker .
worker : w”m #HRE wu er
'a"E' write worker j

urhar I'akﬂ gR'T i’.?-?'q?
| Q:IE

wn ife I ke

Task Hesull Task
Task Re “"
Task J
Flesult R
fana rak&
*'5”“? wrrm w ”E
|.-.r rile
MASTEH

UNIVERSITAT
DEUS 1 SSEBNU RG

Looking up entries

e Entries are read by associative lookups
o Not: lookup by a single identifier

e Create entry template and read(template):
o Take some custom class, e.g. MyEntry

o Set some fields that must match,
e.g. MyEntry.name=,foo"

o Leave others null that can match against any value,
e.g. MyEntry.value=null

o Will return an MyEntry instance that matches

o Or block until one becomes available

uuuuuuuuu AT
DEUS 1 SSEBNU RG

Conclusion

e Easy communication and synchronization

o Transactions (multiple take/write) also possible

e Persistent data storage built into concept

e Easily scalable (add more processes/workers)

e Very different model

o How to map other applications than master-worker?

o E.g. a chat? A multiplayer card playing game?

e Inefficient implementation (RMI-based)

uuuuuuuuu AT
DEUS 1 SSEBNU RG

