Domain Impersonation is Feasible: A Study of CA Domain Validation Vulnerabilities

Lorenz Schwittmann, **Matthäus Wander**, Torben Weis 2019-07-24

Distributed Systems Group, University of Duisburg-Essen

Open-Minded

Trust in the web

Research questions:

Trust in the web

Research questions:

 What security measures do CAs employ to prevent attacks on domain validation?

Trust in the web

Research questions:

- What security measures do CAs employ to prevent attacks on domain validation?
- How secure is Let's Encrypt compared to traditional CAs?

- Background: Process of Certificate Issuance
- Attacks on Domain Validation & Countermeasures
- Methodology of this Study
- Results & Conclusion

Process of Certificate Issuance

DV/EV Certificates

- Scope of this work: Domain Validation
 - Verifies that *applicant* controls domain

- Out of Scope: Extended Validation
 - Verifies entity (e.g. company), more expensive

← → C ① A Bundesamt fuer Sicherheit in d... (DE) | https://www.bsi.bund.de/DE/Home/home_node.html
Bundesamt fuer Sicherheit in der Informationstechnik

Validation Method: DNS

- Show control over domain
- Applicant adds resource record chosen by CA to DNS zone
- Dashed lines: Flow of random token

HTTP

- Show control over domain by placing file on webserver
- Dashed lines: Flow of random token
- Solid line: supporting DNS lookups

- Show control over domain by placing file on webserver
- Dashed lines: Flow of random token
- Solid line: supporting DNS lookups

- Show control over domain by placing file on webserver
- Dashed lines: Flow of random token
- Solid line: supporting DNS lookups

- Show control over domain by placing file on webserver
- Dashed lines: Flow of random token
- Solid line: supporting DNS lookups

Applicant

- CA sends email with random token to domain owner
- Applicant has to show knowledge of this token

- CA sends email with random token to domain owner
- Applicant has to show knowledge of this token

- CA sends email with random token to domain owner
- Applicant has to show knowledge of this token

- CA sends email with random token to domain owner
- Applicant has to show knowledge of this token

Attacks on Domain Validation

Attacks in General

On-Path Attacker

Countermeasures

• Multipath queries

On-Path Attacker

- Multipath queries
- Relay Node in different autonomous system

On-Path Attacker

- Multipath queries
- Relay Node in different autonomous system
- Multiserver queries

On-Path Attacker

- Multipath queries
- Relay Node in different autonomous system
- Multiserver queries
- DNSSEC

Attacks on HTTP-based Validation

On-Path Attacker

- HTTP multipath, request from different AS
- HTTPS? Requires trusted certificate, cannot be presumed by CA
- DNS-Based Authentication of Named Entities (DANE)

Passive Attacker

Countermeasures

• Opportunistic STARTTLS

CAA DNS RR

- Limits which CAs may issue certificates for domain
- Mandatory by CA/Browser Forum Baseline Requirements
- Example: example.com. CAA 0 issue "letsencrypt.org"
- When not existing/insecure: attacker can choose weakest CA

Measurement Method

Setup

Detection of Countermeasures

DNS, different categories:

- 1. Obvious from single query
 - DNS cookies
 - TCP transport
 - 0x20 encoding
 - specific type/name queries (e.g. TLSA under _25._tcp.domain)
- 2. Obvious from multiple queries
 - DNSSEC, requires DO flag in all queries and additional DNSKEY query
 - Multipath queries
 - Multiserver queries
- 3. Exclude by counterexample
 - Source port randomization
- 4. Not observable
 - Flood recognition against off-path spoofing

HTTP, all observable

- HTTP multipath
- DANE: HTTPS + TLSA query with DNSSEC

SMTP, all observable

- STARTTLS, command initiated by sending MTA
- DANE via DNS queries
- End-to-end encryption via DNS queries

Conclusiveness of Method

- Search for countermeasures
- Absence of countermeasures means vulnerability in our model
- Presence of countermeasures does not allow to conclude absence of vulnerability (i.e. informational status, implementation errors)
- Susceptible to report a false negative vulnerability rating
- But no false positive rating: vulnerabilities are definite

Results

Tested CAs

.

СА	Tested Validation Methods	Trusted Root CA			
AlphaSSL	Email, DNS	GlobalSign			
Amazon	Email, DNS	Starfield Technologies			
Certum	Email, DNS, HTTP	Certum			
Comodo	Email, DNS, HTTP	Comodo			
DigiCert	Email ¹ with identity validation	DigiCert			
GeoTrust	Email	GeoTrust			
GlobalSign	HTTP ²	GlobalSign			
GoDaddy	Email, DNS, HTTP	Go Daddy Group			
Let's Encrypt	DNS, HTTP, TLS-SNI	IdenTrust			
Network Solutions	Email	USERTRUST			
RapidSSL	HTTP ³	DigiCert			
SSL.com	Email, DNS, HTTP	USERTRUST			
Starfield Technologies	Email, DNS, HTTP	Starfield Technologies			
StartCom	Email	-			
Thawte	DNS, HTTP	DigiCert			
Thawte	Email	Thawte			

Further available validation methods: ¹HTTP, DNS; ²DNS, Email; ³Email

Covers 96% of publicly trusted certificates in Alexa TOP 10 million as of 2018.

Classification of vulnerable (\bullet), mitigated (\bullet), found no vulnerability (\bigcirc).

CA	C/	٩A	DNS			
	On-path	Off-path	On-path	Off-path		
AlphaSSL	0	0	•	O		
Amazon	•	\bullet	\bullet	\bullet		
Certum	\bigcirc	\bigcirc	•	\bullet		
Comodo	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
GoDaddy	\bullet	\bullet	•	\bullet		
Let's Encrypt	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
SSL.com	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
Starfield Technologies	\bullet	\bullet	•	\bullet		
Thawte	\bigcirc	\bigcirc	${}^{\bullet}$	\bullet		

Vulnerabilities found for HTTP-based validation

Classification of vulnerable (\bullet), mitigated (\bullet), found no vulnerability (\bigcirc).

CA	C	٩A	DI	NS	HTTP
	On-path	Off-path	On-path	Off-path	Active
Certum	0	0	0	0	٠
Comodo	\bigcirc	\bigcirc	•	\bullet	•
$GlobalSign^*$	\bigcirc	\circ	${}^{\bullet}$	\bullet	•
GoDaddy	•	\bullet	\bigcirc	\bigcirc	•
Let's Encrypt	\bigcirc	\bigcirc	\bigcirc	\bigcirc	•
RapidSSL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	•
SSL.com	\bigcirc	\bigcirc	\bigcirc	\bigcirc	lacksquare
Starfield Technologies	•	\bullet	\bigcirc	0	•
Thawte	\bigcirc	\bigcirc	\bigcirc	\bigcirc	•

* GlobalSign solved the DNS vulnerabilities in August 2018 after we disclosed our results.

Classification of vulnerable (\bullet), mitigated (\bullet), found no vulnerability (\bigcirc).

CA	CAA		D	NS	SMTP		
	On-path	Off-path	On-path	Off-path	Passive	Active	TLS version
AlphaSSL	0	0	0	0	0	•	1.2
Amazon	•	O	O	O	\circ	•	1.0
Certum	•	O	•	O	\circ	•	1.0
Comodo	0	0	0	0	\circ	\circ	1.2
DigiCert	0	0	0	0	\circ	•	1.2
GeoTrust	•	0	•	O	0	•	1.0
GoDaddy	•	0	•	O	0	•	1.2
Network Solutions	0	0	•	O	0	•	1.2
SSL.com	0	0	•	O	0	•	1.2
Starfield Technologies	•	O	0	0	0	•	1.2
StartCom	•	0	•	0	•	•	none
Thawte	•	0	•	O	0	•	1.0

Experimental Validation

Experiment: Perform Actual Attack

 \rightarrow successfully obtained certificates in every case

Disclosed findings to CAs

- Starfield Technologies: DNSSEC not mandatory, therefore not supported
- Thawte: DNSSEC not a priority
- Certum: Acknowledged baseline violation, fixed in July 2018
- GlobalSign: Extensive communication. Acknowledged findings, deployed new infrastructure and provided voucher codes. We verified countermeasure existence in August 2018.
- Let's Encrypt: Acknowledged HTTP vulnerability, favors validation method restrictions in CAA records

Domain Owners

- Use CAA records to restrict which CAs which may issue certificates
- Use DNSSEC signing
- Use downgrade resilient signaling mechanisms like DANE or CAA to restrict validation channels when available

CA

• Perform DNSSEC validation

 $\mathsf{CA}/\mathsf{Browser}\ \mathsf{Forum}$

 \bullet Codify DNSSEC validation in the CA/Browser Forum Baseline Requirements

Conclusion: Certificate Authorities

- Domain validation attacks are feasible for network-level attacker
 - Every CA was vulnerable via at least one validation method
- Research question: Let's Encrypt is at least as secure as traditional CAs
- Higher price did not correlate with higher security
- Takeaway: Web security relies indirectly on DNSSEC

Backup

Backup

Validation Methods: TLS

- Equivalent to HTTP
- Random token passed in TLS handshake

Vulnerabilities found for TLS-SNI-based validation

Classification of vulnerable (\bullet), mitigated (\bullet), found no vulnerability (\bigcirc).

CA	CA	٩A	DI	TLS	
	On-path	Off-path	On-path	Off-path	Active
Let's Encrypt	0	0	0	0	•

Possible procedures (Excerpt CA/Browser Forum Baseline v1.4.1 3.2.2.4):

- 1. Established relation (CA = Domain registrar)
- 2. Email, fax, sms, mail to domain contact
- 3. Constructed email {admin, administrator, webmaster, hostmaster, postmaster}@domain
- 4. Change to website (/.well-known...)
- 5. Transmit random number in TLS handshake
- 6. DNS changes (TXT RR)

Source: Hahn & Holz 2011

X.509 Certificates

```
Certificate ::= SEQUENCE {
   tbsCertificate
                        TBSCertificate.
   signatureAlgorithm
                        AlgorithmIdentifier,
                        BIT STRING
   signatureValue
TBSCertificate ::= SEQUENCE {
                   [0] EXPLICIT Version DEFAULT v1,
   version
   serialNumber
                        CertificateSerialNumber.
                        AlgorithmIdentifier,
   signature
   issuer
                        Name.
   validitv
                        Validity.
   subject
                        Name,
   subjectPublicKeyInfo SubjectPublicKeyInfo,
   issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,
                        -- If present, version MUST be v2 or v3
   subjectUniqueID [2]
                        IMPLICIT UniqueIdentifier OPTIONAL.
                        -- If present, version MUST be v2 or v3
   extensions
                   [3]
                        EXPLICIT Extensions OPTIONAL
                        -- If present, version MUST be v3
3
```

X.509 v3 certificate structure according to RFC5280.

Attacks on DNS change

Off-Path Attacker

Attempts to spoof DNS response

- Unaware of actual DNS query
- ID field (16 bit) of query and response have to match
- Attacker has to spoof large amounts of packets

Attacks on DNS change

Off-Path Attacker

- All on-path attacker countermeasures
- Increase entropy
 - Source port randomization
 - 0x20 encoding
 - TCP requests
 - DNS cookies
- Recognize flooding

DNS attack on HTTP/TLS-based validation

- Validation depends on DNS
- Successful DNS attack jeopardizes HTTP validation
- Previous attacks and countermeasures apply
- Only on-path attacker considered for HTTP-level attacks

Attacks on HTTP/TLS-based validation

On-Path Attacker

Countermeasures

- HTTP multipath, request from different AS
- DNS-Based Authentication of Named Entities (DANE)
 → applies also to TLS-based

validation

Attacks on email-based validation

Active Attacker

- STARTTLS with DANE secured certificate
- MTA-STS, requires trusted certificate
- End-to-end email encryption, public keys via DNS

Attacks on email-based validation

Active Attacker

STARTTLS/DANE dependencies

- DNSSEC in all DNS steps
- Redirected MX lookup: TLSA record will not be queried

HTTP and SMTP: DNS queries after connection not relevant for validation request Example:

- 12:44:40 DNS breaklowerparameters.com IN A -EDC
- 12:44:40 DNS breaklowerparameters.com IN AAAA -EDC
- 12:48:37 HTTP GET breaklowerparameters.com/.well-known/pki-valid[...]
- 12:48:49 DNS breaklowerparameters.com IN CAA -EDC
- 12:48:49 DNS www.breaklowerparameters.com IN CAA -EDC
- 12:48:49 DNS breaklowerparameters.com IN DNSKEY -EDC
- 12:48:49 DNS breaklowerparameters.com IN DNSKEY -EDC
- 12:48:49 DNS breaklowerparameters.com IN CAA -EDC
- 12:49:25 DNS breaklowerparameters.com IN A -ED

Certum via HTTP validation

- Instructed to place random token X at /.well-known/pki-validation/X.html
- Violates baseline requirement as "the Request Token or Random Value MUST NOT appear in the request"

Starfield Technologies via HTTP validation

- Requests to three different URLs
 - 1. HTTP /.well-known/pki-validation/godaddy.html
 - 2. HTTPs /.well-known/pki-validation/godaddy.html
 - 3. HTTP /.well-known/pki-validation/starfield.html
- Brand-agnostic backend?

Validation email to all five constructed addresses

- Performed by Amazon, DigiCert, Godaddy and Starfield Technologies
- Separate SMTP connections, increases chances for attacker
- Also increases likelihood for owner to discover attack

Passive Attacks

- All CAs except StartCom used STARTTLS
- Some CAs negotiated TLS 1.0, not recommended by RFC 7525

Active Attacks

- Only Comodo used STARTTLS + DANE + DNSSEC
- Network Solutions and SSL.com queried TLSA record but no DNSKEY
- Unusable by specification and vulnerable to on-path attackers

Certum (DNS and HTTP), GoDaddy (HTTP) and Starfield Technologies (HTTP and email)

- Observed queries via Google Public DNS, a DNSSEC validating public DNS resolving service
- No DNSKEY query from resolver in CA's networks
- Relying on Google for validation, no own DNSSEC capabilities?

DNS raw data

Countermeasure	AlphaSSL	Amazon	Certum	Comodo	${\sf GoDaddy}$	Let's Encrypt	SSL.com	Starfield Technologies	Thawte
DnsBit0×20	No	No	No	No	No	Full	No	No	No
DnsBit0x20CAA	No	No	No	No	No	Full	No	No	No
DnsCAADNSSEC	Full	Partial	Full	Full	Partial	Full	Full	Partial	Full
DnsDNSCookie	No	No	No	No	No	No	No	No	No
DnsDNSCookieCAA	No	Full	No	No	No	No	No	No	Partial
DnsDnskey	Full	No	Full	Full	Full	Full	Full	No	Full
DnsMultiServer	Partial	Full	No	Partial	No	No	Full	No	Full
DnsMultiServerCAA	No	No	No	Full	No	No	Full	No	Partial
DnsMultipath	No	Full	No	No	No	No	Full	No	Full
DnsMultipathCAA	No	No	No	Full	Full	No	Full	Full	Partial
DnsRelevantDNSSEC	No	No	No	Full	No	Full	Full	No	No
DnsTcp	No	No	No	No	No	No	No	No	No
DnsTcpCAA	No	Partial	No	No	No	No	No	No	No

HTTP raw data

Countermeasure	Certum	Comodo	GlobalSign	GoDaddy	Let's Encrypt	RapidSSL	SSL.com	Starfield Technologies	Thawte
DaneTls443	No	No	No	No	No	No	No	No	No
DnsBit0x20	No	No	No	No	Full	No	No	No	No
DnsBit0x20CAA	No	No	No	No	Full	No	No	No	No
DnsCAADNSSEC	Full	Full	Full	Partial	Full	Full	Full	Partial	Full
DnsDNSCookie	No	No	No	No	No	Partial	No	No	No
DnsDNSCookieCAA	No	No	No	No	No	Full	No	No	Full
DnsDnskey	Full	Full	Full	Full	Full	Full	Full	Full	Full
DnsMultiServer	Partial	No	Full	Full	Partial	Partial	Partial	Partial	Partial
DnsMultiServerCAA	No	Full	No	No	No	No	Full	No	No
DnsMultipath	Full	No	No	Full	No	Partial	Full	Full	Partial
DnsMultipathCAA	No	Full	No	No	No	No	Full	No	No
DnsRelevantDNSSEC	Full	No	No	Full	Full	Full	Full	Full	Full
DnsTcp	No	No	No	No	No	No	No	No	No
DnsTcpCAA	No	No	No	No	No	Partial	No	No	Partial
HttpMultipath	No	No	No	No	No	No	Full	No	No

TLS-SNI raw data

Countermeasure	Let's Encrypt
DaneTls443	No
DnsBit0x20	Full
DnsBit0x20CAA	Full
DnsCAADNSSEC	Full
DnsDNSCookie	No
DnsDNSCookieCAA	No
DnsDnskey	Full
DnsMultiServer	Partial
DnsMultiServerCAA	No
DnsMultipath	No
DnsMultipathCAA	No
DnsRelevantDNSSEC	Full
DnsTcp	No
DnsTcpCAA	No
TIsMultipath	No

Email raw data

Countermeasure	AlphaSSL	Amazon	Certum	Comodo	DigiCert	GeoTrust	GoDaddy	Network Sol.	SSL.com	Starf.	StartCom	Thawte
DaneTls25	No	No	No	Full	No	No	No	Partial	Partial	No	No	No
DnsBit0x20	No	No	No	No	No	No	No	No	No	No	No	No
DnsBit0x20CAA	No	No	No	No	No	No	No	No	No	No	No	No
DnsCAADNSSEC	Full	Partial	Partial	Full	Full	Partial	Partial	Full	Full	Partial	Partial	Partial
DnsDNSCookie	No	No	No	No	No	No	No	No	No	No	No	No
DnsDNSCookieCAA	No	No	No	No	No	No	No	No	No	No	No	No
DnsDnskey	Full	Full	No	Full	Full	No	No	Full	Full	Full	No	No
DnsMultiServer	Partial	Partial	No	Partial	Partial	No	No	No	No	No	No	No
DnsMultiServerCAA	No	No	No	No	Partial	No	No	Full	No	No	No	No
DnsMultipath	No	Full	No	Full	Full	No	No	No	No	No	No	No
DnsMultipathCAA	No	No	No	No	Partial	No	No	Full	No	No	No	No
DnsRelevantDNSSEC	Full	No	No	Full	Full	No	No	No	No	Full	No	No
DnsTcp	No	No	No	Partial	No	No	No	No	No	No	No	No
DnsTcpCAA	No	No	No	No	No	Partial	No	No	No	No	No	Partial
TIsSmtp	Full	Full	Full	Full	Full	Full	Full	Full	Full	Full	No	Full

Fehler provozieren, SMTP

- $\bullet \ \mathsf{DANE} \to \mathsf{TLSA}\text{-}\mathsf{Anfragen}$
 - Zone signieren
 - Invalide Signaturen bei Mailserver 1, spricht kein TLS
 - Valide bei Mailserver 2 mit unbk. Hashalg, Server, spricht kein TLS
 - Mailserver 3 mit validen Signaturen, bek. Hash
 - Sollte nur beim 3. zugestellt werden

Kleinere CAs untersuchen

X.509 Trust

Chain of trust.svg, Wikimedia ©Yanpas 2016