

Domain Name System without Root Servers

Matthäus Wander, Christopher Boelmann, Torben Weis

<matthaeus.wander@uni-due.de>

CRISIS 2017

Dinard, France, September 21, 2017

Domain Name System

- DNS is a critical infrastructure in the Internet
 - Authenticity secured with DNSSEC signatures
 - Hierarchical trust model

Chain of Trust

Parent delegates trust for subnamespace

Chain of Trust

Parent delegates trust for subnamespace

Domain owner depends on all parents

Root Zone Management

PROPOSAL

DNSSEC without Root

- Skip root and start resolution on top level?
 - Root zone is rather small (2 MByte)

Motivation

Trust

- Avoid centralization in single point of trust
- Root can tamper with any top-level domain
- Root keys are held within U.S. jurisdiction

Reliability

No dependency on root operations

Client Privacy

One less level for leaking query names

Use Case

- Redundant domain names in URL
 - Resolve multiple names, majority voting over result
 - No organization can tamper with all three names

http://www.example.br+pl+cz/

br pl cz

www.example.br www.example.pl www.example.cz

192.0.2.112 192.0.2.112

Challenges

- Resolver needs the root zone contents
- Challenge: How to retrieve the TLD delegations?
 - ⇒ Bootstrapping
- TLD delegations change occassionally
- Challenge: How to update the TLD delegations?
 - ⇒ Priming: update server IP addresses
 - ⇒ Trust anchor update: update public keys
- Solutions exist on root level
 - ⇒ Use similar mechanisms for top-level domains

Bootstrapping

- Objective: retrieve IP addresses and keys of TLD
- Automatically over existing trusted path
- Manually from TLD operators

Priming: Update Server Addresses

[RFC 8109]

- Query TLD for set of server IP addresses
 - Timeout? ⇒ query another known server
 - Succeeds if at least one known server responds
- Check all TLDs regularly for new IP addresses

Update Trust Anchors

[RFC 5011]

- Query TLD for set of public keys
- Key rollover

- Later revoke and remove old key
- Check all TLDs regularly for new public keys

Commitment and Update Periods

- TLDs must keep one server address and one public key for commitment period △t
 - e.g. $\Delta t = 1$ year
- Resolvers must update every $\Delta u < \Delta t$
 - If update has been missed: bootstrapping required
- Opt-in: let operators choose
 - TLD: signalize rootless support during bootstrapping
 - Rootless and traditional approach can coexist in the same system

FEASIBILITY STUDY

Will It Blend?

Feasibility Study

- Research questions:
 - How long until a TLD replaces all server addresses?
 - What is the availability with different update Δu ?
 - How often do TLDs replace their DNSSEC keys?
- 4-year measurement, every day
 - Download root zone to get TLD server addresses
 - Query TLD server for their public keys
- Data cleaning
 - We consider 1317 TLDs that existed for >1 year

IP Address Replacement

How many TLDs would become unreachable?

• Simulation with different update periods Δu

Average Key Rollover Interval

Conclusions

- Without root, there is one less authority to trust
 - We still need to trust the TLD operator that we choose
 - Drawback: cannot rely on root for emergency updates
- Approach requires long key rollover intervals
 - 4-year study shows suitability for 72% of TLDs
- Opt-in: operator chooses whether to go rootless
- Approach integrates within existing DNS
 - Shares characteristics of today's DNS ecosystem
 - Does not require a fundamentally new architecture

