

University of Duisburg-Essen Bismarckstr. 90 47057 Duisburg Germany

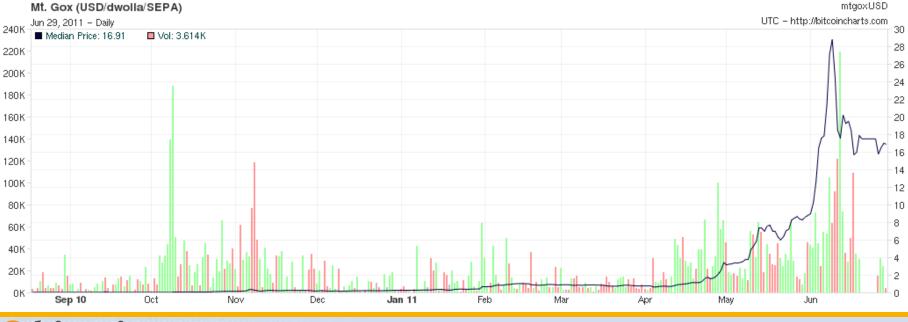
HOW BITCOIN WORKS

Matthäus Wander

June 29, 2011

Overview

- Electronic currency system
- Decentralized
 - No trusted third party involved
 - Unstructured peer-to-peer network
- Non-reversible
 - Cryptographic proof instead of trust
- Open source beta software (C++, wxWidgets)
- Currency unit: BTC


Matthäus Wander

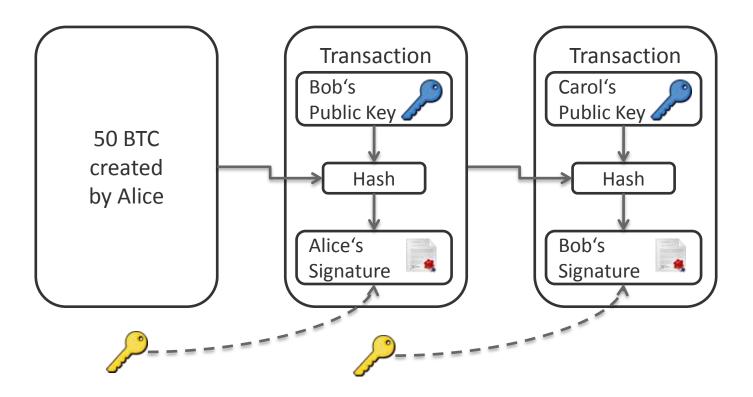
J Bitcoin	(Cold	O D K		
Eile Settings	Jelp			-
Send Coins	Address 8	look		
Your Bitcoin Add	ress: 1Aj6tcC2N	sHYRVCM8jUwJaF2FzLzMUeSLd	0	<u>N</u> ew
Balance:	0.20119333			
All Transactions	Sent/Received	Sent Received		
Status	Date	Description	Debit	Credit
241 confirmation	s 6/18/2011 12	29 Received with: 13bgEWS61S7X (main)	+0.155
243 confirmation	vs 6/18/2011 12	:02 To: 1JasvfMtipwF6GCaYVbtV3VjkvMv	-0.1005	
521 confirmation	s 6/17/2011 01	:22 Generated		+0.12_
2052 confirmatio	6/10/2011 11	:54 To: 12vJeZo4aTARnE2DEUXQpoAMVv.	-2.20	
2225 confirmatio	6/9/2011 18:	13 To: 1Ae9kJDXX199d5vDuppYNwzVDg	-2.00	
2410 confirmatio	6/8/2011 21:	55 Received with: 1GYU6rfMZtt9 (doub.		+1.00
2411 confirmation	6/8/2011 21:	15 To: 1H3ceoJgqiEUSytgwEZ4RbLoNzeL	-0.51	
2413 confirmatio 6/8/2011 21:02		7a: 109c6qLKRjxh7xbyv6MBUcBFJHD.	-0.25	
3832 confirmatio	6/1/2011 20:	53 To: 17n4sPRQ2SRSUofCvSDMAvqMZ.	-1.00	
3997 confirmatio	5/31/2011 23	:56 Received with: 13bgEWS6157X (main)	+4.96
4527 confirmation	5/28/2011 13	:59 Received with: 13bgEWS6157X (main)	+0.02

Timeline

- 1993: ecash (DigiCash/David Chaum)
- 1998: Crypto-currency ideas (W. Dai, N. Szabo)
- Nov 2008: Whitepaper by Satoshi Nakamoto
- Feb 2009: Initial Bitcoin release

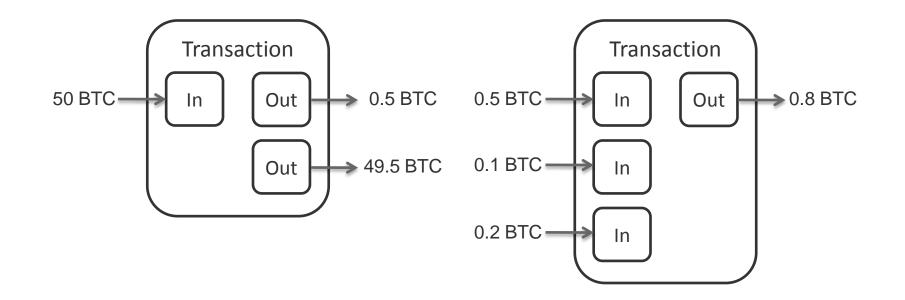
Matthäus Wander

June 29, 2011


Concept

- Clients invest computing power to create coins
 - By solving cryptographic puzzles
 - Difficulty of puzzles adapts
 - Number of coins limited
- Public transactions for coin transfers
 - Senders and receivers have addresses
 - Authorized by private key signatures
- Honest majority prevents double-spending

Public transaction database


Transactions

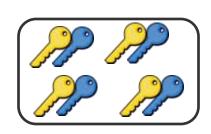
- Public transfers between Bitcoin addresses
- Signed by previous coin owner

Splitting and Combining Coins

• Coins can be split up to 10⁻⁸ BTC

₿

Bitcoin Address


- Fingerprint of public key
- 25 bytes identifier
 - Format version: 0x01
 - Fingerprint: RIPEMD160(SHA256(pub))
 - Checksum: 4 bytes of SHA256(fingerprint)
- Base58 encoded
 - Alphanumeric alphabet (without I, O, I, 0, +, /)
 - E.g. 1BpCB9Qzm2LePrQKu6RzASzEKvjc6utsQQ

Key Handling

- Client generates public/private key pairs
 - ECDSA 256 bit
 - Stores them in wallet file
- Wallet contains key pairs, not coins
- Private key authorizes transactions
- If keys are stolen, thief may use your coins
- If keys are lost, coins are lost

Matthäus Wander

• No wallet encryption nor backup in v0.3.23 GUI

Networking (1/2)

Unstructured peer-to-peer network

IRC bootstrapping

 Nickname contains IP endpoint, e.g. u4euc453wZ599zQ

- ,u', base58(IP address, port, checksum)
- Freenode used at the beginning

Users got k-lined for botnet-like behavior

Moved to dedicated network in mid 2010

- #bitcoin overcrowded, now using #bitcoin[00-99]

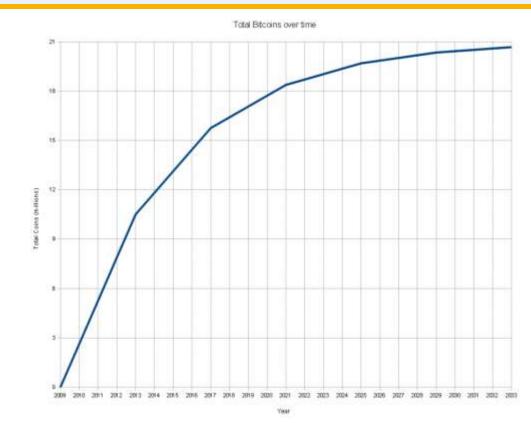
Networking (2/2)

• DNS bootstrapping

– Without update channel

- Built-in fallback peer list
- Peer exchange
- Port 8333/TCP
- UPnP

bitcoin

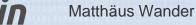

- Purpose of networking:
 - Flood transactions
 - Share distributed database (block chain)

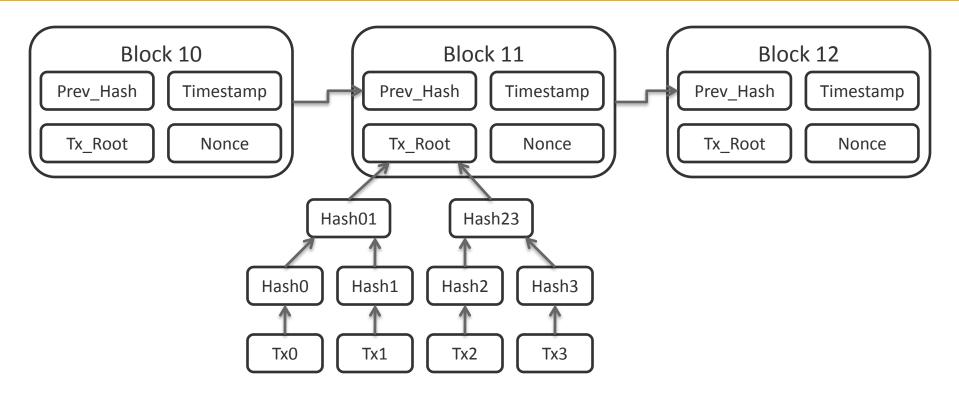
Mining Coins (1/3)

- Solve cryptographic challenge to create coins
 - Find a *block* whose hash value is below target value
 SHA256(SHA256(block)) < target
- Random client finds solution first
- Chance proportional to computing power
- On average one solution every 10 minutes
- Difficulty adapts to keep solving rate constant
- If found: announce block which is proof-of-work

Mining Coins (2/3)

- Payout per block:
 50 BTC
- Halves every 4 years
- In 2033:
 - Payout < 1 BTC</p>
 - 20.7 million BTC in circulation



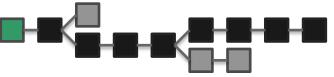

• Total number of Bitcoins is a geometric series and approaches maximum of 21 million BTC

Mining Coins (3/3)

- **Bitcoin requires processing power for operation** — The more honest clients work, the harder cheating is
- Hash rate vs. power consumption
- GPU mining is common, CPU mining pointless
- ATI cards better suited than NVIDIA
- Mining pools share payout
- In future: FPGA, ASIC?

- Blocks commit transactions
- First transaction is generation of coins

Bitcoin


Block Chain (2/3)

▋᠊ᢓ᠆ᢓ᠆ᢓ᠆ᢓ᠆ᢓ᠆ᢓ᠆ᢓ᠆ᢓ᠆ᢓ᠆ᢓ᠆ᢓ

- Clients have built-in Genesis block
 - Newer versions also have checkpoint blocks
- Download, validate and store block chain from untrusted network
 - Check whether block hashes < target value</p>
 - Verify known checkpoints
 - Verify balance and check for double-spending
- Forging chain is computationally infeasible

Block Chain (3/3)

• Block chain may fork

- Due to propagation delay in p2p network
- Due to attacker injecting forged blocks
- Use first block received, save the other one
- Switch to other chain, if it becomes longer
- Transactions confirmed after 6 blocks
 - Double-spending becomes unlikely
- Ignore orphaned block chains
 - Generated coins mature after 100 blocks

Adapting Difficulty

- Allowed block timestamp
 - time < now + 2h
 - time > median of past 11 blocks

- uint32 nBits value greater ≙ less difficult uint8 uint24
- nBits adapts every 2016 blocks (≈2 weeks)

 $- nBits \cdot ((time_{cur} - time_{cur-2016}) / 2 weeks)$

- 256 bit target hash value
 - $\operatorname{uint24} \cdot 2^{(8 \cdot (\operatorname{uint8} 3))} = 0x000000000001D932F0...$

bitcoin

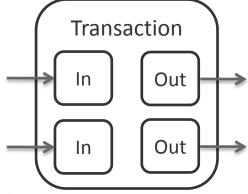
+2h

Scalability

• Transactions flooded in network

– Pending until someone commits them in new block

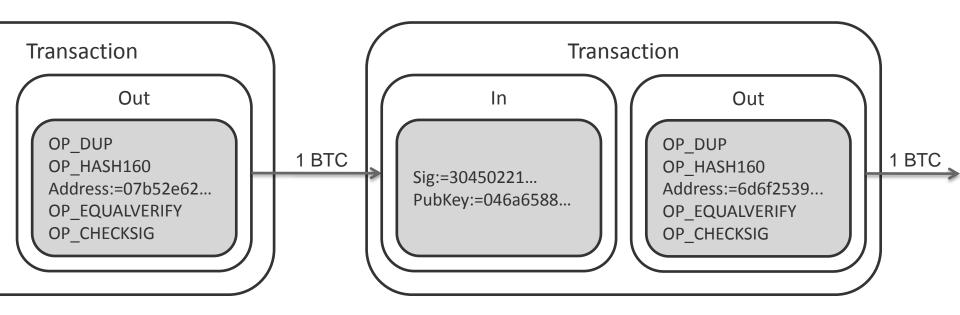
- Does not scale with number of transactions
- Block chain mirrored on all clients
 300 MB after 2,5 years of operation
- Storage usage can be further optimized
 - Compress block chain to 240 MB
 - Prune redeemed transactions from hash tree
 - Estimated ≈70% of transactions can be pruned


hitcoin

Transaction Fee and Priority

- Fee to keep transaction count low
 - Sender may pay fee to mining client who finds block
 - Fee is voluntary, but so is commitment in block
- Transaction priority greater ≙ higher priority

- sum(value_{in} \cdot age_{in}) / size


Transaction ignored if fee too low

- May be done by both, relays and miners
- Minimum fee depends on space left in new block
- Fee serves as incentive for mining clients

Transaction Script

- Scripting language for verification
- Simple stack machine without loops

bitcoin

• Transactions traceable in public block chain

Transaction [?]	Fee [?]	Size (kB)?	From (amount) [?]	To (amount) ²
<u>ealfc5bf38</u>	0	0.135	Generation: 50 + 0.178 total fees	12oxGihmrUEZRf4p8ApokzQzDkf6M4Z26c: 50.178
<u>0b6572ba5a</u>	0.01	0.439		<u>1Lsd745FNdQumjFK3wYxevLmpALD5ojAzM</u> : 0.19 <u>1FffCkjmGJigrWpUAM9HYQCAR7fqhrHi9Q</u> : 6.5

- Weak anonymity (pseudonymity)
- Anonymity vanishes if identity linked to address
- To keep payments private, ...
 - … keep addresses private
 - ... use different addresses
 - ... use trusted mixing service

Conclusion

- Peer-to-peer accounting system
- Relying on honest majority
- Growing public log file (block chain)
 - Limited scalability
 - Limited privacy
- Public key cryptography for authorization
- Proof-of-work to prevent double-spending
 - Requires vast amount of computing power
- Technically sophisticated experiment