

University of Duisburg-Essen Bismarckstr. 90 47057 Duisburg Germany

TOWARDS PEER-TO-PEER-BASED CRYPTANALYSIS

Matthäus Wander, Arno Wacker, Torben Weis Oct 14th, 2010

6th LCN Workshop on Security in Communications Networks

Outline

- Introduction, Requirements
- System Model, Example Application
- Self-organizing job management

- Result verification
- Summary and Outlook

Introduction

• Goal

Run computationally intensive cryptanalytic job

Stakeholder

- Users with interest in cryptanalysis
- But without distributed computing infrastructure

Job distribution

- Invite friends
- Share CPU cycles with foreigners

- **R1) CPU cycle sharing**
- R2) Ad-hoc setup
- R3) Open & decentralized (participant-driven)
- **R4) Correctness**
- **R5) Offline support**
- **R6) Scalability & Efficiency**

Distributed Computing Paradigms

	Sharing (R1)	Ad-hoc (R2)	Open (R3)	Correct (R4)	Offline (R5)	Scales (R6)
Client/Server Computing	Х			Х	Х	
Cloud Computing		Х		Х	Х	Х
Cluster Computing	Х			Х	Х	Х
Grid Computing	Х	(x)	(x)	Х	Х	Х
Peer-to-Peer Computing	Х	Х	Х	Х	Х	Х

Related Work

- CoDiP2P [Castella2008]
 - Manager hierarchy with job master
- Organic Grid [Chakravarti2006]
 - Manager hierarchy with job master
- Jalapeno [Therning2005]
 - Manager/worker groups
- JNGI [Verbeke2002]
 - Monitor/dispatcher/worker groups
- →Require trusted job managers

Job Management

Management work

- Divide job into tasks
- Allocate tasks
- Monitor status, track progress
- Collect, verify and merge results

Who manages the job?

- Job Submitter
- Elected workers
- All workers (self-organization)

- **R1) Cycle-sharing**
- R2) Ad-hoc setup
- R3) Open & decentralized (participant-driven)
- **R4) Correctness**
- R5) Offline support
- R6) Scalability & efficiency

Submitter manages job

- **R1) Cycle-sharing**
- R2) Ad-hoc setup
- R3) Open & decentralized (participant-driven) R4) Correctness
- **R5) Offline support**
- **R6) Scalability & efficiency**

Elected workers manage job

- **R1) Cycle-sharing**
- R2) Ad-hoc setup
- R3) Open & decentralized (participant-driven)
- **R4) Correctness**
- **R5) Offline support**
- **R6) Scalability & efficiency**

All workers manage job

Idea

- Share management burden among peers
- Do not use designated manager role
- Peers write job status into a distributed storage
- Resulting challenges
 - Organize data structure for efficient access
 - Ensure correctness of computation
 - Ensure correctness of stored data

System Model and Assumptions

- Scalable peer-to-peer overlay
- Unique participant ID
- Secure message transport
- NAT traversal
- Accounting of work performed [Garcia2005] [Turner2004]
- Distributed storage

(Chord, Pastry)

[Wacker2008b]

[Wacker2008b]

[Wacker2008a]

(Distributed Hashtable)

Example Application

- Brute-force attack on symmetric-key cipher
- Represents class of search problems
- Input: ciphertext, cipher being used
- Solution space: all possible keys
 - Decrypt ciphertext
 - Rate result with score function
- Divide solution space into task blocks

- Structure task list as tree
- Each object stored on different peer

- Participating peers traverse tree to get task
- Construct tree on demand
 - Divide
 - Compute
 - Merge

- Participating peers traverse tree to get task
- Construct tree on demand
 - Divide
 Compute
 Merge

n

- Participating peers traverse tree to get task
- Construct tree on demand
 - Divide
 Compute
 Merge

Participating peers traverse tree to get task

0-7

- Construct tree on demand
 - Divide
 Compute
 Merge
 0-3
 0-1

- Participating peers traverse tree to get task
- Construct tree on demand
 - Divide
 - Compute
 - Merge

- Participating peers traverse tree to get task
- Construct tree on demand
 - Divide
 - Compute
 - Merge

- Participating peers traverse tree to get task
- Construct tree on demand
 - Divide
 - Compute
 - Merge

Task allocation

- Peers mark tasks as allocated
- But allocations are not exclusive locks
- Other peers may ignore allocations

Tree traversal

- Avoid querying occupied objects
- Avoid unnecessary large trees
- Depth-first traversal with frequent left turns

- Cheat attempts for search problems
 - Peer claims to have found solution (false positive)
 - Peer claims subspace does not contain solution (false negative)
- Find opportunistic cheaters efficiently

Result Verification (2)

Removal of Partial Results

- Large tree requires bandwidth for maintenance
- Tree size would scale with number of peers

— ... if unneeded subtrees were removed

- Peers not allowed to remove unneeded subtrees
 - Too risky to lose progress
 - Even with verification
- Job submitter removes junk from time to time
 - If she doesn't: some maintenance overhead
 - Still allowed to go offline

Distributed Storage

- Special requirements not provided by plain DHT
- Adaptive replication
 - Ensure consistency
 - Scale with number of read operations [Knoll2008]
- Access model: read all, append all, modify own
- Prevent unauthorized modifications
- Soft state: remove data if not refreshed

Summary and Outlook

- Peer-to-peer computing for CPU sharing (R1)
- Self-organizing without infrastructure setup (R2)
- Without provider or administration (R3)
- Deals with opportunistic peers (R4 partly)
- Allows job submitter to go offline (R5)
- Considers scalability & efficiency so far (R6)
- Future work
 - Large-scale evaluation
 - More complex applications

- [Chakravarti2006]: Organic Grid
 - Arjav J. Chakravarti, Gerald Baumgartner, Mario
 Lauria: Self-Organizing Scheduling on the Organic
 Grid. Int. Journal of High Performance Computing
 Applications, 2006, vol. 20, no. 1
- [Castella2008]: CoDiP2P
 - D. Castellà, I. Barri, J. Rius, F. Giné, F. Solsona, F.
 Guirado: CoDiP2P: A Peer-to-Peer Architecture for
 Sharing Computing Resources. Int. Symposium on
 Distributed Computing and Artificial Intelligence,
 2008

• [Therning2005]: Jalapeno

 Niklas Therning, Lars Bengtsson: Jalapeno: secentralized grid computing using peer-to-peer technology. 2nd conference on Computing frontiers, 2005

• [Verbeke2002]: JNGI

 Jerome Verbeke, Neelakanth Nadgir, Greg Ruetsch, Ilya Sharapov: Framework for Peer-to-Peer
 Distributed Computing in a Heterogeneous,
 Decentralized Environment. 3rd International
 Workshop on Grid Computing, 2002

- [Knoll2008]: Replication (Repl1, Repl2)
 - Mirko Knoll, Haitham Abbadi, Torben Weis:
 Replication in Peer-to-Peer Systems. 3rd Int.
 Workshop on Self-Organizing Systems (IWSOS), 2008
- [Wacker2008b]: Authentication (Auth)
 - Arno Wacker, Gregor Schiele, Sebastian Schuster, Torben Weis: Towards an Authentication Service for Peer-to-Peer based Massively Multiuser Virtual Environments. Int. J. Advanced Media and Communications, Inderscience Enterprises Ltd., 2008

• [Garcia2005]: Currency

Flavio D. Garcia and Jaap-Henk Hoepman: Off-line
 Karma: A Decentralized Currency for Peer-to-peer
 and Grid Applications. 3rd Applied Cryptography and
 Network Security (ACNS), 2005

• [Turner2004]: Currency

David A. Turner and Keith W. Ross: A Lightweight
 Currency Paradigm for the P2P Resource Market. 7th
 Int. Conference on Electronic Commerce Research,
 2004

• [Wacker2008a]: NAT traversal (<u>NAT</u>)

- Arno Wacker, Gregor Schiele, Sebastian Holzapfel, and Torben Weis: (Demo) A NAT Traversal Mechanism for Peer-To-Peer Networks. 8th Int. Conference on Peerto-Peer Computing (P2P), 2008
- [Knoll2009]: Bootstrapping (IRC)
 - Mirko Knoll, Matthias Helling, Arno Wacker, Sebastian Holzapfel and Torben Weis: Bootstrapping Peer-to-Peer Systems Using IRC. 5th Int. Workshop on Collaborative Peer-to-Peer Systems (COPS), 2009

