
c© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

This is the author manuscript, before publisher editing. Use the identifiers below to access the published
version.

Digital Object Identifier: 10.1109/CCNC.2012.6181044

URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6181044

NTALG – TCP NAT Traversal with
Application-Level Gateways

Matthäus Wander∗, Sebastian Holzapfel∗, Arno Wacker†, Torben Weis∗

∗Universität Duisburg-Essen, Bismarckstraße 90, 47057 Duisburg, Germany
{matthaeus.wander|sebastian.holzapfel|torben.weis}@uni-due.de

†Universität Kassel, Wilhelmshöher Allee 73, 34121 Kassel, Germany
arno.wacker@uni-kassel.de

Abstract—Consumer computers or home communication de-
vices are usually connected to the Internet via a Network
Address Translation (NAT) router. This imposes restrictions
for networking applications that require inbound connections.
Existing solutions for NAT traversal can remedy the restrictions,
but still there is a fraction of home users which lack support
of it, especially when it comes to TCP. We present a framework
for traversing NAT routers by exploiting their built-in FTP and
IRC application-level gateways (ALG) for arbitrary TCP-based
applications. While this does not work in every scenario, it
significantly improves the success chance without requiring any
user interaction at all. To demonstrate the framework, we show
a small test setup with laptop computers and home NAT routers.

I. INTRODUCTION

Network Address Translation (NAT) works well for out-
bound connections for client-server applications, but it hinders
inbound connections for peer-to-peer or voice-over-ip applica-
tions. The de-facto standard for traversing a NAT is Universal
Plug and Play (UPnP). It is supported by many NAT routers,
but not as widely available to solely rely on UPnP. In a test
out of 40 Internet home users in Germany 4 users had UPnP
enabled and working for NAT traversal [1]. A test of 2 700
Internet BitTorrent users showed that despite the existence of
UPnP and manual port forwarding about 40% of the users
suffered from NAT connection restrictions [2].

Hole punching is a NAT traversal technique that works
without user configuration. It has proven to work well for
UDP-based applications [3], and there are also some TCP-
based approaches, e.g. [3], [4], [5], [6]. The known TCP hole
punching mechanisms, however, impose requirements tough
to be met in practice, e.g. capture raw packets or send packets
with forged headers. Our goal is a simple NAT traversal mech-
anism for TCP that (1) does not require user configuration, (2)
uses plain sockets as offered by the operating system, and (3)
does not rely on spoofing, sniffing or administrator privileges.

II. APPLICATION-LEVEL GATEWAYS

Our approach is based on application-level gateways (ALG)
that are built-in to basically all home NAT routers. An ALG
is a NAT router component that looks for IP addresses and
port numbers in particular types of application traffic and
creates public port mappings. A prominent example is the
File Transfer Protocol (FTP), a legacy protocol created before

NATs emerged. FTP in active mode would not work with a
client behind a NAT router, because the FTP server needs
to create inbound connections to the client. An FTP ALG
solves this by looking for the PORT command which contains
the users’ private IP address and port number, opens a port
mapping and rewrites the PORT command to contain the
publicly reachable IP endpoint. The FTP server connects back
to the public IP endpoint which is forwarded by the NAT
router to the users’ device. While an ALG is made to support
a specific type of application, we will show that it is possible to
exploit specific types of ALGs for generic TCP NAT traversal.

III. NTALG FRAMEWORK

Our NAT Traversal with Application-Level Gateways frame-
work (NTALG) encapsulates the TCP connection establish-
ment and is meant to be run as part of a peer-to-peer
application. In a peer-to-peer network there is either a server
or there are peers with unrestricted connectivity that serve as
an entry point into the network. Such a server or peer does
not only aid in bootstrapping the peer-to-peer network, it can
also act as message relay between two peers. We call it a
rendezvous node and use it in our framework as mediator of
two NAT peers trying to connect to each other.

After a peer has joined the network, its public IP address
and port number is known to the rendezvous node and can
be distributed in the network. In case port forwarding is
configured correctly, this peer is fully accessible at this point
and further NAT traversal techniques are not necessary. This
is similar to when the peer’s NAT router uses an endpoint
independent mapping and filtering behavior (classification
according to [7]) respectively a full cone NAT behavior (STUN
classification [8]): other peers can now establish inbound
connections without further actions. When a direct connection
to a peer fails, NTALG attempts NAT traversal by using an
FTP ALG and an IRC ALG.

A. FTP ALG

NTALG connects to an FTP server emulation on a ren-
dezvous node and mimics a simple FTP control session. The
peer opens a new local listening TCP socket and sends the
PORT command with the local port number. The FTP ALG
on the peer’s NAT router opens a mapping and forwards the

altered PORT command. The emulated FTP server reads the
PORT command, but instead of connecting back it sends the
peer’s public IP address and port number back via the FTP
control connection. Now any other peer can attempt to connect
to the public IP endpoint opened by the FTP ALG. This does
not work in all cases because some FTP ALGs expect the FTP
server to connect back and filter connection attempts from
other IP addresses. Thus, NTALG in parallel attempts NAT
traversal with an IRC ALG.

B. IRC ALG
Similar to the above, the framework connects to an IRC

server emulation on a rendezvous node and mimics the IRC
protocol. It opens a new local listening TCP socket and sends
a Direct Client-to-Client (DCC SEND) request. A DCC SEND
request is an IRC chat message with a particular data format
called Client-To-Client Protocol (CTCP). It contains, besides
an arbitrary file name and size, the local IP address and port
number which are rewritten by an IRC ALG. The port mapping
is now open and can be connected to by another peer. IRC
ALGs are not as common as FTP ALGs, but unlike FTP, an
IRC ALG does not know the expected remote IP address and
thus can not filter inbound connection attempts.

IV. DEMONSTRATION

We have evaluated the NTALG framework in our lab
with 15 off-the-shelf NAT routers in their factory default
configurations. 4 out of 15 NAT routers allow inbound TCP
connections after setting up an outbound connection on that
port number, i.e. with trivial NAT traversal. Given the fact
that peers can switch roles during connection establishment
(reversal), only one of both needs to allow an inbound
connection. Thus the success probability that not both NAT
routers block inbound connections is 1 − 11

15 ·
10
14 ≈ 48%.

With NTALG we can establish inbound connections on 8 out
of 15 NAT routers which corresponds to an overall success
probability of 1 − 7

15 ·
6
14 = 80% in our setup. We will

demonstrate the NTALG framework along with a GUI that
visualizes the underlying connection procedures (Fig. 1). Our
test setup will consist of three laptop computers and select
NAT router devices (cf. our lab setup in Fig. 2). Two hosts
behind NAT routers attempt to connect to each other by using
a rendezvous node.

V. CONCLUSION

NTALG is a framework for TCP NAT traversal which
exploits ALG capabilities of NAT routers. We use FTP ALG
and IRC ALG in parallel, as this proved to be most effective.
The software is implemented in C# .NET, though it basically
works in any programming language that supports socket. It
does not require user configuration, administrator privileges
or a priori knowledge of the involved NAT routers. As plain
sockets are used, an established connection provides the ser-
vice quality of the operating system’s TCP implementation,
unlike e.g. custom reliable UDP or application-level tunneling
implementations. NTALG does not work with all NAT routers
but yields a decent success probability with no user constraints.

Fig. 1. NTALG framework visualization

Fig. 2. Experimental lab setup

REFERENCES

[1] S. Holzapfel, M. Wander, A. Wacker, L. Schwittmann, and T. Weis,
“A New Protocol to Determine the NAT Characteristics of a Host,” in
Proceedings of 25th IEEE International Parallel Distributed Processing
Symposium, International Workshop on Hot Topics in Peer-to-Peer Sys-
tems (HOTP2P), Anchorage, Alaska, USA, May 2011.

[2] K. Jünemann, P. Andelfinger, and H. Hartenstein, “Towards a Basic DHT
Service: Analyzing Network Characteristics of a Widely Deployed DHT,”
in Computer Communications and Networks (ICCCN), 2011 Proceedings
of 20th International Conference on, 31 2011-aug. 4 2011, pp. 1 –7.

[3] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-Peer Communication Across
Network Address Translators,” in USENIX Annual Technical Conference,
2005, pp. 179–192.

[4] S. Guha, Y. Takeda, and P. Francis, “NUTSS: A SIP-based Approach to
UDP and TCP Network Connectivity,” in FDNA ’04: Proceedings of the
ACM SIGCOMM workshop on Future directions in network architecture.
New York, NY, USA: ACM, 2004, pp. 43–48.

[5] A. Biggadike, D. Ferullo, G. Wilson, and A. Perrig, “NATBLASTER: Es-
tablishing TCP connections between hosts behind NATs,” in Proceedings
of ACM SIGCOMM ASIA Workshop, Apr. 2005.

[6] S. Holzapfel, M. Wander, A. Wacker, and T. Weis, “SYNI – TCP Hole
Punching Based on SYN Injection,” in Proceedings of the The 10th IEEE
International Symposium on Network Computing and Applications, IEEE
NCA11, Cambridge, MA, USA, August 2011, (to appear).

[7] S. Guha and P. Francis, “Characterization and Measurement of TCP
Traversal through NATs and Firewalls,” IMC ’05: Proceedings of the
5th ACM SIGCOMM conference on Internet Measurement, 2005.

[8] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, “STUN - Simple
Traversal of User Datagram Protocol (UDP) Through Network Address
Translators (NATs),” IETF, RFC 3489, 2003. [Online]. Available:
http://tools.ietf.org/html/rfc3489

